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windows, lost sale, early production and backlog over a planning horizon of T 

periods. In this context, a demand not processed within its time window can either be 

lost (lost sale), satisfied from a production that is processed before the release period 

of the demand (early production) or satisfied from a production that occurs after the 

demand due period (backlog). We present several properties of the optimal solution 

for different variants of the problem when production time windows are non customer 

specific. We propose dynamic programming algorithms to solve optimally the 

examined problems in O(T2).  
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Abstract

We consider the single item uncapacitated lot-sizing problem with produc-
tion time windows, lost sale, early production and backlog over a planning
horizon of T periods. In this context, a demand not processed within its
time window can either be lost (lost sale), satisfied from a production that is
processed before the release period of the demand (early production) or sat-
isfied from a production that occurs after the demand due period (backlog).
We present several properties of the optimal solution for different variants of
the problem when production time windows are non customer specific. We
propose dynamic programming algorithms to solve optimally the examined
problems in O(T 2).

Keywords: Lot-sizing, dynamic programming, production time windows, lost sale, early
production, backlog.

1 Problem context and definition

In this paper, we address the single-level single-item uncapacitated lot-sizing prob-
lem with time window constraints and quality of service criteria. It is a production
planning problem where a time varying demand has to be produced over a planning
horizon of length T . In this work, we focus on production time windows, i.e. inter-
vals where production can occur. In this context, the production of an item takes
place between a release date that is the first period in which the item can be pro-
duced and a due date which corresponds to the latest customer order delivery date
of the item. The release dates represent several situations such as the availability
dates imposed by perishable products or the availability of raw materials or some
semi-finished products involved in the production of the item. This is particularly
important in a multi-level environment.

Two kinds of time window constraints can be considered, the delivery time
windows [9] and the production time windows [7]. The delivery time window, also
∗Corresponding author. E-mail: absi@emse.fr
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called grace period, represents the interval where the products can be delivered to
the customers with no penalty. However, all the demands can still be produced as
early as the first period of the planning horizon and the holding cost is considered
to be null if a demand is satisfied within its corresponding time window. Dauzère-
Pérès et al. [7] were the first to study the problem where a demand is represented by
a time window. They define the general case of the problem where no restriction on
the time window structure is imposed. Such a problem is called Customer Specific
(CS). They use a pseudo-polynomial dynamic programming algorithm to solve the
problem. More recently, Hwang [8] proposed a dynamic programming algorithm
to solve the problem with concave production costs in O(T 5).

An interesting special case of the problem is called Non Customer Specific
(NCS) where two time windows cannot be strictly included. In other words, for
any pair of time windows [s1, t1], [s2, t2], either s1 ≤ s2 and t1 ≤ t2 or s1 ≥ s2 and
t1 ≥ t2. The NCS problem is widely encountered in practical situations. Moreover,
it is solved in polynomial time. An O(T 4) time dynamic programming algorithm
was proposed in [7] and later the complexity was improved in O(T 2) by Wolsey
[14].

The problem considered in this paper includes quality of service criteria which
aim at meeting the customer requirements as best as possible. In classical lot-sizing
models, when the demand cannot be produced within the time window because of
a lack of resource capacity or prohibitive production costs, then it is lost. In this
paper, the possibility of producing the demand before the release period (early
production) or after the due period (backlog) at a given cost is studied. The moti-
vation comes from the attempt to satisfy the customer even if a penalty is induced,
such additional cost will be preferred to the lost sale. More precisely, lost sales
involve allowing some orders to not being delivered if the total cost of producing
the demand is prohibitive. This situation illustrates a crucial lack in the produc-
tion resource capacity for instance. Sandbothe and Thompson [11] are among the
first who studied the uncapacitated lot-sizing problem including lost sales. They
propose a dynamic programming algorithm to solve it in O(T 3). Aksen et al. [4]
reduce this complexity to O(T 2) and Absi and Kedad-Sidhoum [1, 2] consider lost
sales when several orders and setup times are considered. We can also quote the
more recent work of van den Heuvel and Wagelmans [12] who show that there
exists an equivalence between the lot-sizing problems dealing with bounded inven-
tory, remanufacturing option, production time windows and cumulative capacities.
Another criterion studied for the first time in this paper consists in considering
early production where orders are produced before their release periods at a given
penalty. Symmetrically, backlogs allow producing orders after their due periods at
a given cost. For some customers, it is preferable to receive orders after the due
period rather than not receive them at all. We quote the seminal work on backlogs
of Zangwill [15].

The different parameters of the problem are defined as follows. Producing one
unit in period t incurs a production cost pt. The holding cost of one unit at the
end of period t is ht. A setup cost st is incurred at each period where production
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takes place. The demands are deterministic but have a particular structure. A
demand becomes available for production at a given period r, its release period,
before which it cannot be produced. A demand has to be produced before a due
period t, r ≤ t. This demand is represented by drt. Also, Dt defines the aggregate
demand with due period at t, i.e. Dt =

∑t
r=1 drt. When modeling the fact that drt

is not satisfied within its time window, three cases will be considered: Lost sale,
early production and backlog. In the first case, demands that are not delivered
at the end of a given period are lost and thus cannot be satisfied later, a unitary
cost lt is induced. When considering time windows, it is possible to produce the
demands before their release periods at a given unit cost denoted et. Symmetri-
cally, when the production of a demand starts after its due period, a backlog can
occur at unit cost bt. We will assume, without loss of generality, that lt > et > pt.
The problem consists in finding a production plan over T that minimizes the total
cost including production, setup and holding costs as well as the early production,
backlog and lost sale costs. All the results presented in this paper concern the case
of non customer specific demands.

The rest of the paper is organized as follows: Section 2 describes our models
and clarify the integration of early production, lost sale and backlog to the clas-
sical lot-sizing problem with time windows. Mixed Integer Programming (MIP)
formulations of these problems are presented as well as some numerical examples.
Section 3 presents several properties and lemmas for the studied problems. Based
on these properties, dynamic programming algorithms to solve the problems are
presented in Section 4. The execution of the algorithms on the examples of Section
2 are detailed. Finally, Section 5 provides a short conclusion and future research
directions.

2 Mathematical formulations

When considering quality service criteria, two core problems are to be studied.
The first one allows lost sale and early production. In practical applications, this
problem illustrates the situation where, if the cost of producing the demand within
its time window is prohibitive, then we try to anticipate the production at a given
cost. This can represent for instance the cost of early delivering raw materials to
process the demand. The release period of the demand is violated and a cost is
incurred. If the early production cost is still prohibitive then the demand is lost.
The first problem related to these assumptions will integrate Early production and
Lost sale and will be denoted by ULS-TW-EL. The second problem will focus on
producing the demand uppermost within its time windows and then by allowing
the violation of the release or the due period. This leads to allowing respectively
Early production or Backlog. The problem will be denoted by ULS-TW-EB. In this
case, backlogs that occur in the very last period of the horizon can be considered
as lost sales.
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2.1 A formulation for the problem with early production and lost
sale

The following model considers the uncapacitated non customer specific case with
lost sale and early production (ULS-TW-EL). Let Xt be the quantity processed
in period t, It the inventory level at the end of period t and Yt the setup binary
variable which is equal to 1 if Xt > 0 and 0 otherwise. The lost sale at period
t is defined by Lt and the quantity started at period t or before and that is not
available at t is represented by Et.

In order to generalize the classical demand time window constraints for the
ULS-TW-EL, we need to disaggregate the lost sale variables. The production time
window constraints can be written as follows:

∑t
k=1Xk ≤

∑t
k=1

∑T
l=k dkl, ∀ t =

1, · · · , T . If we consider only lost sale Ll corresponding to periods l ∈ [1, . . . , t]
and the early delivery Et at period t, then the time window constraints are not
sufficient. In fact, lost sale related to a demand dkl that begins before or at period t
and ends after period t must be taken into account. We define the new disaggregate
lost sale variable Llt that represents the lost sales at period t for a demand that
starts at period l, such that Lt =

∑t
l=1 Llt.

Minimize
T∑

t=1

(
ptXt + stYt + htIt + lt

t∑
k=1

Lkt + etEt

)
(1)

Subject to:

It−1 +Xt +
t∑

k=1

Lkt = Dt + It ∀ t = 1, · · · , T (2)

t∑
k=1

(Xk +
T∑

l=k

Lkl)− Et ≤
t∑

k=1

T∑
l=k

dkl ∀ t = 1, · · · , T (3)

Xt ≤

(
T∑

l=1

Dl

)
Yt ∀ t = 1, · · · , T (4)

Lkt ≤ dkt ∀ k, t = 1, · · · , T (k ≤ t) (5)
Yt ∈ {0, 1} ∀ t = 1, · · · , T (6)
Lkt ≥ 0 ∀ k, t = 1, · · · , T (k ≤ t) (7)
Xt, Et, It ≥ 0 ∀ t = 1, · · · , T (8)

The objective (1) is to minimize the total production, setup, lost sale, early
production and holding costs. Constraints (2) are the inventory balance equations.
In Constraints (3), the cumulative quantity of production and lost sales for the
first t periods should be at most equal to the sum of the demands that must
start at or before t and delivered at or after t plus the early production at period
t. Constraints (4) relate the binary setup variables to the continuous production
variables. Constraints (5) define upper bounds on the lost sale variables. The
domain definitions of the variables are defined in Constraints (6)-(8).
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2.2 Illustrative example

The following example illustrates an optimal solution structure for the ULS-TW-
EL problem. The parameters of the instance are given in Table 1 and in Figure
1.

Periods 1 2 3 4 5
st 500 5000 5000 5000 500
ht 4 4 4 4 4
lt 100 100 70 30 30
et 20 40 20 10 10
pt 2 2 2 2 2

Table 1: Example with early production and lost sale

The optimal solution of the problem is obtained using the mathematical model
of Section 2.1 and a Mixed Integer Linear Programming (MILP) solver. The solu-
tion is depicted in Figure 1.

Time

productions

demands

1 2 3 4 5 6

[10]

[40]

[20]

15

35

60

1530

130 20

[.]

early production

lost sales

production within time windows

Figure 1: Early production and lost sale

From Figure 1, it is interesting to notice that, due to the cost values, demands
d22, d23 and d33 are early produced in period 1 while demands d11, d12 and d55 are
produced during their time windows. We can also observe that demands d34 and
d44 are totally lost.

2.3 A formulation of the problem with early production and back-
log

Let Bt be the quantity backlogged at the end of period t. The following model
considers the non customer specific case with backlog and early production denoted
by ULS-TW-EB.
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Minimize
T∑

t=1

(ptXt + stYt + htIt + btBt + etEt) (9)

Subject to:
It−1 +Xt +Bt = Dt + It +Bt−1 ∀ t = 1, · · · , T (10)

t∑
k=1

Xk − Et +Bt ≤
t∑

k=1

T∑
l=k

dkl ∀ t = 1, · · · , T (11)

Xt ≤

(
T∑

l=1

Dl

)
Yt ∀ t = 1, · · · , T (12)

Yt ∈ {0, 1} ∀ t = 1, · · · , T (13)
Xt, Bt, Et, It ≥ 0 ∀ t = 1, · · · , T (14)

The objective (9) is to minimize the total production, setup, early production,
backlog and holding costs. Constraints (10) are the inventory balance equations.
In Constraints (11), the cumulative quantity of production for the first t periods
should be at most equal to all the demands that must start at or before t and
delivered at or after t plus the early production minus the backlogged quantities
at period t. Constraints (12), (13) and (14) are similar to Constraints (4), (6) and
(8) defined in Section 2.1.

2.4 Illustrative example

The following example illustrates an optimal solution structure for the ULS-TW-
EB problem. The parameters are given in Table 2 and in Figure 2.

Periods 1 2 3 4 5
st 500 5000 5000 5000 500
ht 4 4 4 4 4
bt 30 30 30 30 30
et 20 40 20 10 10
pt 2 2 2 2 2

Table 2: Example with early production and backlog

The optimal solution of the problem is obtained using the mathematical model
of Section 2.3 and a Mixed Integer Linear Programming (MILP) solver. The solu-
tion is depicted in Figure 2.

From Figure 2, it is interesting to notice that demands d22 and d23 are early
produced in period 1 while demands d11 and d12 are produced within their time
windows. We can also observe that demands d33, d34 and d44 are totally backlogged.
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Time

early production

production within time windows

productions

demands

1 2 3 4 5 6

[10]

[40]

[20]

15

35

60

1530

early production

production within time windows

backorders

95 130

[.]

Figure 2: Early production and backlog

2.5 A formulation for the problem with early production, backlog
and lost sale

To formulate the model that considers the non customer specific case with Early
production, Lost sale and Backlog denoted by ULS-TW-ELB, we can merge the
two previous models. The new model is constructed by modifying the one described
through Constraints (9)-(14). The objective function (9) is modified by introducing
the cost related to lost sales. We need to introduce lost sale variables in Constraints
(10) and (12) as Constraints (2) and (3), and to add Constraints (5) and (7).

As previously mentioned, these three options (early production, backlog and
lost sale) are generally not considered simultaneously. For some cases (e.g. lt >>
bt > pt), we can switch from the ULS-TW-ELB model to the ULS-TW-EB model
by considering the demands that are backlogged to the end of the horizon as lost
sales (with bT ≥ 0). We can also define two levels of time windows for each demand.
The first one is equivalent to the classical one (let us call it weak time window),
it can be violated by considering early production and backlog. The second one
is calculated according to lost sale, backlog and early production costs (let us call
it strong time window), no backlog or early production is allowed for this kind of
time windows. A preprocessing phase can be used to define the weak and strong
time windows that can improve the resolution of the problem.

3 Structural optimality properties

This section presents several structural characteristics of optimal solutions of the
uncapacitated lot-sizing problem with production time windows under the non
customer specific (NCS) assumption. The objective is to minimize the total cost
including production, setup and holding costs as well as early production, backlog
and lost sale costs.
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3.1 Properties based on time windows

We first recall the non-inclusive time window property for the NCS case [7].

Property 1 (Non inclusive time windows). When the time windows are non cus-
tomer specific, then dst > 0 implies that dkl = 0, for all k < s and for all l > t.
Thus, two time windows cannot be strictly included, i.e for any pair of time win-
dows ((s1, t1), (s2, t2)), either s1 ≤ s2 and t1 ≤ t2, or s1 ≥ s2 and t1 ≥ t2.

If we consider the release (resp. delivery) vector defined by the release (resp.
delivery) period r (resp. t) of each demand drt, we define a unique set of non inclu-
sive time windows associated with these vectors. Let us denote by K the cardinal
of this set. The non inclusive time windows property of the NCS problem gives an
upper bound on K, that is 2T − 1. In the sequel of the paper, the unique set of
non-inclusive time windows will be denoted by dk for k = 1, · · · ,K. The reader
can refer to [5] for a complete description of the algorithm that converts the time
windows to NCS demands.

An important property satisfied by at least one optimal solution of the ULS-
TW-EL problem is that a demand dst is either fully produced (possibly before
period s) or fully lost.

Theorem 1. There always exists an optimal solution of the ULS-TW-EL problem
in which the demand dst is processed in only one period k such that 0 ≤ k ≤ t or
entirely lost at t.

In the following, the hat-superscripted variables such as x̂t refer to optimal
values.

Proof. The proof is made by contradiction. Let us assume that in an optimal
solution the production of a demand dst takes place in periods t1 and t2 such that
t1 < s ≤ t2 ≤ t. We will denote x̂t1 (resp. x̂t2) the production of period t1
(resp. t2). The variable cost of producing the quantity x̂t1 at period t1 is equal to
Ct1 =

∑s−1
k=t1

etx̂t1 +
∑t−1

k=t1
hkx̂t1 + pt1 x̂t1 , and the variable cost of producing the

quantity x̂t2 at period t2 is equal to Ct2 =
∑t−1

k=t2
hkx̂t2 + pt2 x̂t2 . If Ct1 < Ct2 then,

by decreasing the production at period t2 by x̂t2 and increasing the production at
period t1 by x̂t2 , we obtain a solution that dominates the previous one since the
total cost is reduced by (Ct2 −Ct1). Similarly, if Ct1 > Ct2 then, by decreasing the
production at period t1 by x̂t1 and increasing the production at period t2 by x̂t1 ,
we obtain a solution that dominates the previous one. When Ct1 = Ct2 , a solution
where the production of dst occurs in a single period (t1 or t2) can be derived
without increasing the total cost. This proves that the initial solution could not be
a dominant solution, which is a contradiction. The proof uses the same arguments
on the lost sale and production variables for the case where a demand dst is partially
lost.

Similarly, another important property satisfied by at least one optimal solution
of the ULS-TW-EB problem is that a demand dst, is either fully produced (possibly
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before period s) or fully backlogged.

Theorem 2. There is always an optimal solution of the ULS-TW-EB problem in
which the demand dst is processed in only one period k such that 0 ≤ k ≤ t or
backlogged in only one period k such that t < k ≤ T .

Proof. The proof uses the same arguments as the ones given in the proof of Theorem
1 on the backlog and production variables for the case where a demand dst is
partially backlogged.

We derive the following corollaries from Theorems 1 and 2 where [rk, tk] is the
time window associated to dk.

Corollary 1. If dk and dk+1 are processed in an optimal solution of the ULS-TW-
EL (or ULS-TW-EB) problem, then dk is processed before or at the same period as
dk+1.

Proof. The proof is similar to the one presented in Dauzère-Pérès et al. [7].

Particularly, we can observe that if the production of both demands dk and
dk+1 occur in the interval [rk+1, tk], then the demands are processed at the same
period for the ULS-TW-EL (or ULS-TW-EB) problem.

Corollary 2. In an optimal solution of the ULS-TW-EL (or ULS-TW-EB) prob-
lem, if dk is early processed then dl such that k < l ≤ K and rk = rl cannot be
processed in [rk, tk].

Proof. The proof is made by contradiction. Suppose that in an optimal solution, a
demand dk is early produced at period t1 < rk and a demand dl (with k < l ≤ K
and rl = rk) is processed at period t2 such that rk ≤ t2 ≤ tl. x̂k

t1 (resp. x̂l
t2)

denotes the quantity produced at period t1 (resp. t2) to satisfy the demand dk

(resp. dl). Let us define Ct1,t2 =
∑rk−1

t=t1
et +

∑t2−1
t=t1

ht + pt1 . The solution is not
dominant since it can be improved, by moving the production x̂l

t2 to period t1 if
Ct1,t2 < pt2 or by moving the production x̂k

t1 to period t2 if Ct1,t2 > pt2 . When
Ct1,t2 = pt2 , a solution where the production of dk occurs in a single period (t1 or
t2) can be derived without increasing the total cost. This proves that the initial
solution could not be a dominant solution, which is a contradiction.

Corollary 3. In an optimal solution of the ULS-TW-EL problem, if customer
order dk is lost then dl is also lost for all l such that k < l ≤ K and tl = tk.

Proof. The proof is made by contradiction. Suppose that, in an optimal solution,
a demand dk is totally lost and a demand dl (with k < l ≤ K and tl = tk)
is processed at period t such that t ≤ tl. Let us denote Ck

t the unitary cost
of satisfying the demand dk from period t, Ck

t =
∑rk−1

t′=t et′ +
∑tk−1

t′=t ht′ + pt. It
is obvious that Ck

t ≤ C l
t. This solution is not a dominant one since it can be

improved, by producing the demand dk at period t if Ct,k ≤ Ct,l ≤ ltk or by
allowing the demand dl to be lost if C l

t > ltk . This proves that the initial solution
could not be a dominant solution, which is a contradiction.
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Note that we cannot derive a similar property when tl > tk. Indeed, in an
optimal solution of the ULS-TW-EL problem, we can observe the following situ-
ation: dk is lost while dl such that k < l ≤ K and tl > tk is processed at period
j with rk ≤ j ≤ tk. In this case, it is less costly to produce dl at period j rather
than assuming a lost sale at period dl contrary to demand dk where the lost sale
at period dk is less costly than producing before dk.

Corollary 4. In an optimal solution of the ULS-TW-EB problem where dk is
backlogged then all the demands dl such that k < l ≤ K and tl = tk are backlogged.

Proof. The proof is made by contradiction. Suppose that in an optimal solution,
a demand dk is totally backlogged at period t2 such that t2 > tk and a demand
dl (with k < l ≤ K and tl = tk) is processed at period t1 such that t1 ≤ tl.
Let us denote by Ck

t2 the unitary cost of satisfying the demand dk by producing
at period t2, we have Ck

t2 =
∑t2−1

t′=rk
bt′ + pt2 . Similarly, let us denote by C l

t1

the unitary cost of satisfying the demand dl by a production at period t1, then
C l

t1 =
∑rk−1

t′=t1
et′ +

∑tk−1
t′=t1

ht′ + pt1 . It is clear that Ck
t1 ≤ C l

t1 . This solution is not
a dominant one since it can be improved, by producing the demand dk at period
t1 if Ck

t1 ≤ C l
t1 < Ck

t2 or by backlogging the demand dl at period t2 if C l
t1 > Ck

t2 .
When C l

t1 = Ck
t2 , a solution where the production of dl is backlogged to period t2

or dk is produced at period t2 can be derived without increasing the total cost.
This proves that the initial solution could not be a dominant solution, which is a
contradiction.

3.2 Extended Wagner-Within properties

The following lemmas show that the well-known Wagner-Within based properties
[13] are not observed when considering early production, backlog and lost sale.
Therefore, we prove that some extensions are valid.

Lemma 1. The zero-inventory ordering policy of the optimal solution, Ît−1X̂t = 0
∀ t = 1, . . . , T , is not valid for the ULS-TW-EL and ULS-TW-EB problems.

Proof. It is possible to find a counter-example where an optimal solution of an
instance with two demands dk and dl such that k < l and tk = tl consists in
producing at the release period of both demands We have X̂rk

> 0 (to satisfy
demand dk) and X̂rl

> 0 (to satisfy demand dl), and thus Îrl−1
X̂rl

> 0.

For the uncapacitated lot-sizing problem with lost sales (ULS-LS), L̂tX̂t = 0
(when pt < lt) and then L̂t(Dt−L̂t) = 0 (see [4]). When considering time windows,
the property does not hold.

Lemma 2. L̂t(Dt − L̂t) = 0 ∀ t = 1, . . . , T , is not valid for the ULS-TW-EL
problem.

Proof. Similarly to the proof of Lemma 1, it is possible to find a counter-example
where an optimal solution of an instance with two demands dk and dl such that

10



k < l and tk = tl with dk produced at period rk and dl totally lost (i.e. L̂tl > 0),
so that L̂tk(Dtk − L̂tk) > 0 since Dtk = dk + dl.

The following property illustrates the fact that, in an optimal solution of the
ULS-TW-EL problem, if a procurement is made at period t, then lost sales can-
not be allowed in the same period. Let us recall that lost sale costs are larger
than production costs as they act as penalties on the non-delivery of the demand
requirement.

Lemma 3. L̂tX̂t = 0 when pt < lt ∀ t = 1, . . . , T for the ULS-TW-EL problem.

Proof. Let us assume that Xt > 0 and Lt > 0 at optimality. Then adding a value
δ to Xt and reducing Lt by δ such that δ ≤ Dt −Xt, will lower the total cost by
(pt − lt)δ. Thus, the solution is not optimal.

Lemma 3 is not valid for ULS-LS and ULS-TW-EL if the condition pt < lt is
not satisfied. In fact, it is possible to find a counter-example where the optimal
solution of an instance with two demands dk and dl, such that k < l and tk < tl,
with a structure of production and lost sale costs allowing Xtk > 0 to satisfy dl

and dk is lost if ptk > ltk .

Note also that no early production can occur at period t − 1 if a production
takes place at period t in an optimal solution of the ULS-TW-EL and ULS-TW-EB
problems.

Lemma 4. Êt−1X̂t = 0, ∀ t = 1, . . . , T for the ULS-TW-EL and ULS-TW-EB
problems.

Proof. The proof is made by contradiction. Suppose that in an optimal solution, a
demand dk is totally early produced at period t1 such that t1 < rk and a production
is made at period t2 for a given demand dl (with t2 ≥ t1). According to the
assumptions, the unitary cost of early producing at period t1 and holding the unit
until period t2 for demand dk is smaller than the unitary cost of producing at
period t2, i.e.

Ck
t1,t2 < pt2 (15)

with

Ck
t1,t2 =

t2−1∑
t′=t1

et′ +
t2−1∑
t′=t1

ht′ + pt1 (16)

On the other hand, the unitary cost of producing at period t1 and holding the unit
until t2 for demand dl is larger than the unitary cost of producing at period t2, i.e.

C l
t1,t2 > pt2 (17)

11



with

C l
t1,t2 =

min(rl,t2)−1∑
t′=t1

et′ +
t2−1∑
t′=t1

ht′ + pt1 (18)

From (15) and (17) we have:

C l
t1,t2 > Ck

t1,t2 (19)

From (16) and (18) we have:

C l
t1,t2 ≤ C

k
t1,t2 (20)

which contradicts (19).

Recall that the Zangwill property [15] for the uncapacitated lot-sizing problem
with backlogs still hold for the ULS-TW-EB problem, i.e. B̂tX̂t = 0 ∀ t = 1, . . . , T .

4 Dynamic programming algorithms

Without loss of generality, we consider that all the demands are ordered as de-
scribed above from k = 1, ...,K, i.e. from the earliest to the latest.

Regarding the properties described in Section 3, we can derive dynamic pro-
gramming algorithms to solve the ULS-TW-EL, ULS-TW-EB and ULS-TW-ULB
problems. The rationale is mainly based on the following:

• The orders are examined from the earliest to the latest. If order k is produced,
then it is produced before or at the same time as order k + 1 (see Corollary
1).

• If order k is produced (even early or late), then it is entirely produced in a
single period (see Theorem 2).

• If order k is lost, then it is entirely lost at its due period (see Theorem 1).

In what follows, forward dynamic programming algorithms are proposed to
compute the optimal values of ULS-TW-EL, ULS-TW-EB and ULS-TW-ELB
problems based on recursion formula that illustrates the principles described above.

4.1 Solving the ULS-TW-EL problem

The dynamic programming algorithm uses the following new cost and parameter
definitions.

12



Definition 1. p′kt denotes the cost of meeting a unitary demand in period t by a
production in period k (k ≤ t). The value of p′kt is determined by (21).

p′kt = pk +
t−1∑
l=k

hl, k ≤ t (21)

Definition 2. e′kt denotes the cost of early producing a unitary demand that starts
at period t from period k (k ≤ t). The value of e′kt is determined by (22).

e′kt =
t∑

l=k

el (22)

Definition 3. H(t, k) is the value of an optimal solution for periods 1, · · · , t in
which demands d1, · · · , dk are either lost or produced before or at period t.

Definition 4. G(t, k) is the value of an optimal solution for periods 1, · · · , t in
which demands d1, · · · , dk−1 are either lost or produced before or at period t, a
production is done at period t and dk is either produced at period t or lost.

The optimal value of the objective function of problem ULS-TW-EL defined by
(1)-(8) is given by H(T,K). H(T,K) is computed by a forward recursion starting
from k = 1 with the initial conditions given by: H(0, k) =∞ for k > 0, H(t, 0) = 0
for t > 0, H(0, 0) = 0 and G(0, k) =∞ for k > 0, G(t, 0) = st for t > 0, G(0, 0) = 0.

Algorithm 1 describes the dynamic programming algorithm which provides the
optimal policy of procurements and losses over the time horizon. Some parameters
are defined below to store at each step of the algorithm the variables used to
compute H(t, k) and G(t, k). They mainly represent the last period and demand
as well as an indicator to check whether a demand is produced or lost and the
production period for each satisfied demand dk. More precisely:

• Hf (t, k) (respectivelyGf (t, k)) represents the function used to calculateH(t, k)
(respectively G(t, k)). These values are fixed to G (respectively H) if the
function used is G (respectively H).

• Ht(t, k) (respectively Gt(t, k)) represents the last period of function Hf (re-
spectively Gf ).

• Hk(t, k) (respectively Gk(t, k)) represents the last demand of the function
Hf (respectively Gf ).

• Hp(t, k) and Gp(t, k) are equal to -1 if demand dk is lost or 1 of it is produced.

• J∗k represents the production period of demand dk. This value is equal to -1
if demand dk is lost.
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Algorithm 1 solving ULS-TW-EL
1: G(0, 0)← 0, H(0, 0)← 0
2: for all k ∈ {1, . . . ,K} do
3: H(0, k)← +∞, G(0, k)← +∞
4: end for
5: for all t ∈ {1, . . . , T} do
6: G(t, 0)← st, H(t, 0)← 0
7: end for
8: for t = 1 to T do
9: for k = 1 to K do

10: if (t ≥ rk) and (t ≤ tk) then
11: G(t, k) ← min(H(t − 1, k − 1) + st + p′ttk

dk, G(t, k − 1) + p′ttk
dk, H(t − 1, k −

1) + st + ltk
dk, G(t, k − 1) + ltk

)
12: Update Gf (t, k), Gt(t, k), Gk(t, k) and Gp(t, k).
13: end if
14: if (t ≤ rk) then
15: G(t, k) ← min(H(t − 1, k − 1) + st + (p′ttk

+ e′trk
)dk, G(t, k − 1) + (p′ttk

+
e′trk

)dk, H(t− 1, k − 1) + st + ltk
dk, G(t, k − 1) + ltk

dk)
16: Update Gf (t, k), Gt(t, k), Gk(t, k) and Gp(t, k).
17: end if
18: if (t ≥ tk) then
19: G(t, k)← +∞
20: end if
21: H(t, k)← min(H(t− 1, k), G(t, k), H(t− 1, k − 1) + ltk

dk, H(t, k − 1) + ltk
dk)

22: Update Hf (t, k), Ht(t, k), Hk(t, k) and Hp(t, k).
23: end for
24: end for
25: k ← K, t← T , F ← H
26: repeat
27: if (F = H) then
28: if (Hp(t, k) = −1) then
29: J∗k ← −1
30: end if
31: F ← Hf (t, k), t← Ht(t, k), k ← Hk(t, k)
32: else
33: if (Gp(t, k) = −1) then
34: J∗k ← −1
35: else
36: J∗k ← t
37: end if
38: F ← Gf (t, k), t← Gt(t, k), k ← Gk(t, k)
39: end if
40: until (k = 0)
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Loops in Algorithm 1 contain at most two levels with respectively T and K
iterations. Recall that, in the NCS problem, K ≤ 2T − 1. The complexity of
Algorithm 1 that solves ULS-TW-EL is thus O(T 2). To obtain the optimal policy
of procurements and losses for each demands dk, we need to backtrack from the fi-
nal H(T,K) through all k using the Hf (t, k), Ht(t, k), Hk(t, k), Hp(t, k), Gf (t, k),
Gt(t, k), Gk(t, k) and Gp(t, k) values. This procedure computes the J∗k values that
represent the production period of demand dk or -1 if this demand is lost. The
algorithm stops when a value J∗k is assigned to each demand dk.

Implementation of Algorithm 1 on Example 2.2
Algorithm 1 is applied to the example described in Table 1. Tables 3 and 4

give respectively the values of G(t, k) and H(t, k) followed by two parameters. The
first parameter is equal to (-1) if the demand k is lost at period t, this parameter
is given by Gp(t, k) for G(t, k) and Hp(t, k) for H(t, k). The second parameter
represents the function used to calculate the current values of G(t, k) and H(t, k),
this parameter is given by the values of Gf (t, k), Gt(t, k), Gk(t, k) for G(k, t) and
the values of Hf (t, k), Ht(t, k), Hk(t, k) for H(t, k). The values in bold represent
the steps of the backtrack procedure defined in Algorithm 1. Finally, the optimal
policy of procurements and losses for each demands dk is provided in Table 5.

k 1 2 3 4 5 6 7 8
t 1 520

G(1,0)
760
G(1,1)

1150
G(1,2)

2050
G(1,3)

4500
G(1,4)

6300(-1)
G(1,5)

6750(-1)
G(1,6)

7350(-1)
G(1,7)

2 +∞ 5600
H(1,1)

5630
G(2,2)

5810
G(2,3)

7420
G(2,4)

9220(-1)
G(2,5)

9670(-1)
G(2,6)

10270(-1)
G(2,7)

3 +∞ +∞ +∞ 6210
H(2,3)

6280
G(3,4)

6640
G(3,5)

7030
G(3,6)

7630(-1)
G(3,7)

4 +∞ +∞ +∞ +∞ +∞ 9620
H(3,5)

9650
G(4,6)

9970
G(4,7)

5 +∞ +∞ +∞ +∞ +∞ +∞ +∞ 7290
H(4,7)

Table 3: G(t, k) values for Example 2.2

k 1 2 3 4 5 6 7 8
t 1 520

G(1,1)
760
G(1,2)

1150
G(1,3)

2050
G(1,4)

4500
G(1,5)

6300
G(1,6)

6750
G(1,7)

7350
G(1,8)

2 520
H(1,1)

760
H(1,2)

1150
H(1,3)

2050
H(1,4)

4500
H(1,5)

6300
H(1,6)

6750
H(1,7)

7350
H(1,8)

3 520
H(2,1)

760
H(2,2)

1150
H(2,3)

2050
H(2,4)

4500
H(2,5)

6300
H(2,6)

6750
H(2,7)

7350
H(2,8)

4 520
H(3,1)

760
H(3,2)

1150
H(3,3)

2050
H(3,4)

4500
H(3,5)

6300
H(3,6)

6750
H(3,7)

7350
H(3,8)

5 520
H(4,1)

760
H(4,2)

1150
H(4,3)

2050
H(4,4)

4500
H(4,5)

6300
H(4,6)

6750
H(4,7)

7290
G(5,8)

Table 4: H(t, k) values for Example 2.2

15



k 1 2 3 4 5 6 7 8
J∗k 1 1 1 1 1 -1 -1 5

Table 5: The optimal policy of procurements and losses for Example 2.2

4.2 Solving the ULS-TW-EB problem

The dynamic programming algorithm uses the following new cost and parameter
definitions.

Definition 5. b′kt denotes the cost of meeting a unitary demand in period t by a
production in period k (k > t). The value of b′kt is determined by (23).

b′kt = pk +
k−1∑
l=t

bl, k > t (23)

Definition 6. H(t, k) is the value of an optimal solution for periods 1, · · · , t in
which demands d1, · · · , dk are produced before or at period t.

Definition 7. G(t, k) is the value of an optimal solution for periods 1, · · · , t in
which demands d1, · · · , dk−1 are either produced before or at period t and dk is
produced at period t. When t ≥ tk, G(t, k) is computed using the cumulative back-
logging costs.

H(T,K) represents the optimal value of the objective function of problem ULS-
TW-EB defined by (9)-(14). H(T,K) is computed by a forward recursion starting
from k = 1 with the initial conditions given by: H(0, k) =∞ for k > 0, H(t, 0) = 0
for t > 0, H(0, 0) = 0 and G(0, k) =∞ for k > 0, G(t, 0) = st for t > 0, G(0, 0) = 0.

The following parameters defined in Section 4.1 will also be used:

• p′kt defined by Equation (21).

• e′kt defined by Equation (22).

• J∗k , Hf (t, k), Ht(t, k), Hk(t, k), Gf (t, k) ,Gt(t, k) and Gk(t, k).

In what follows, we present a forward dynamic programming algorithm to com-
pute G(t, k) and H(t, k) and to determine whether a demand is early produced,
backlogged or produced within its time window. In Algorithm 2, when t ≥ tk the
value of G(t, k) is computed using the cumulative backlogging costs unlike Algo-
rithm 1 where G(t, k) = +∞ when t ≥ tk.

Loops in Algorithm 2 contain at most two levels with respectively T and K
iterations. The complexity of Algorithm 2 that solves ULS-TW-EB is thus O(T 2).
To obtain the optimal policy of procurements and losses for each demands dk, we
need to backtrack from the final H(T,K) through all k using the Hf (t, k), Ht(t, k),
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Algorithm 2 solving ULS-TW-EB
1: G(0, 0)← 0, H(0, 0)← 0
2: for all k ∈ {1, . . . ,K} do
3: H(0, k)← +∞, G(0, k)← +∞
4: end for
5: for all t ∈ {1, . . . , T} do
6: G(t, 0)← st, H(t, 0)← 0
7: end for
8: for t = 1 to T do
9: for k = 1 to K do

10: if (t ≥ rk) and (t ≤ tk) then
11: G(t, k)← min(H(t− 1, k − 1) + st + p′ttk

dk, G(t, k − 1) + p′ttk
dk)

12: Update Gf (t, k), Gt(t, k) and Gk(t, k).
13: end if
14: if (t ≤ rk) then
15: G(t, k)← min(H(t−1, k−1) + st + (p′ttk

+ e′trk
)dk, G(t, k−1) + (p′ttk

+ e′trk
)dk)

16: Update Gf (t, k), Gt(t, k) and Gk(t, k).
17: end if
18: if (t ≥ tk) then
19: G(t, k)← min(H(t− 1, k − 1) + st + b′ttk

dk, G(t, k − 1) + b′ttk
dk)

20: Update Gf (t, k), Gt(t, k) and Gk(t, k).
21: end if
22: H(t, k)← min(H(t− 1, k), G(t, k))
23: Update Hf (t, k), Ht(t, k) and Hk(t, k).
24: end for
25: end for
26: k ← K, t← T , F ← H
27: repeat
28: if (F = H) then
29: F ← Hf (t, k), t← Ht(t, k), k ← Hk(t, k)
30: else
31: J∗k ← t
32: F ← Gf (t, k), t← Gt(t, k), k ← Gk(t, k)
33: end if
34: until (k = 0)
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Hk(t, k), Gf (t, k), Gt(t, k) and Gk(t, k) values. This procedure obtains the J∗k val-
ues that represents the production period of demand dk. It stops when a value J∗k
is assigned to each demand dk.

Implementation of Algorithm 2 on Example 2.4
Algorithm 2 is applied to the example described in Table 2. Tables 6 and 7

give respectively the values of G(t, k) and H(t, k) followed by one parameters. This
parameter represents the function used to calculate the current values of G(t, k)
and H(t, k), it is given by the values of Gf (t, k), Gt(t, k), Gk(t, k) for G(k, t) and
the values of Hf (t, k), Ht(t, k), Hk(t, k) for H(t, k). The values in bold represent
the steps of the backtrack procedure defined in Algorithm 2. Finally, the optimal
policy of procurements for each demands dk is provided in Table 8.

k 1 2 3 4 5 6 7 8
t 1 520

G(1,0)
760
G(1,1)

1150
G(1,2)

2050
G(1,3)

4500
G(1,4)

8940
G(1,5)

10350
G(1,6)

12510
G(1,7)

2 5320
G(2,0)

5400
G(2,1)

5430
G(2,2)

5610
G(2,3)

7220
G(2,4)

10220
G(2,5)

11270
G(2,6)

12950
G(2,7)

3 5620
G(3,0)

6800
H(2,1)

6240
H(2,2)

6210
H(2,3)

6280
G(3,4)

6640
G(3,5)

7030
G(3,6)

7830
G(3,7)

4 5920
G(4,0)

8000
H(3,1)

6690
H(3,2)

7110
H(3,3)

8170
H(3,4)

8290
G(4,5)

8320
G(4,6)

8640
G(4,7)

5 1720
G(5,0)

4700
H(4,1)

2640
H(4,2)

3510
H(4,3)

4720
H(4,4)

6640
G(5,5)

7120
G(5,6)

7160
G(5,7)

Table 6: G(t, k) values for Example 2.4

k 1 2 3 4 5 6 7 8
t 1 520

G(1,1)
760
G(1,2)

1150
G(1,3)

2050
G(1,4)

4500
G(1,5)

8940
G(1,6)

10350
G(1,7)

12510
G(1,8)

2 520
H(1,1)

760
H(1,2)

1150
H(1,3)

2050
H(1,4)

4500
H(1,5)

8940
H(1,6)

10350
H(1,7)

12510
H(1,8)

3 520
H(2,1)

760
H(2,2)

1150
H(2,3)

2050
H(2,4)

4500
H(2,5)

6640
G(3,6)

7030
G(3,7)

7830
G(3,8)

4 520
H(3,1)

760
H(3,2)

1150
H(3,3)

2050
H(3,4)

4500
H(3,5)

6640
H(3,6)

7030
H(3,7)

7830
H(3,8)

5 520
H(4,1)

760
H(4,2)

1150
H(4,3)

2050
H(4,4)

4500
H(4,5)

6640
G(5,6)

7030
H(4,7)

7160
G(5,8)

Table 7: H(t, k) values for Example 2.4

k 1 2 3 4 5 6 7 8
J∗k 1 1 1 1 5 5 5 5

Table 8: The optimal policy of procurements for Example 2.4
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4.3 Solving the ULS-TW-ELB problem

The dynamic programming algorithm uses the parameters defined in Sections 4.1
and 4.2. We only need to redefine the computation of the recursion functions
H(t, k) and G(t, k) by replacing the two level loops of Algorithm 1 defined from
line 8 to line 24 by the two loops below:

1: for t = 1 to T do
2: for k = 1 to K do
3: if (t ≥ rk) and (t ≤ tk) then
4: G(t, k) ← min(H(t − 1, k − 1) + st + p′ttk

dk, G(t, k − 1) + p′ttk
dk, H(t − 1, k −

1) + st + ltk
dk, G(t, k − 1) + ltk

)
5: Update Gf (t, k), Gt(t, k), Gk(t, k) and Gp(t, k).
6: end if
7: if (t ≤ rk) then
8: G(t, k) ← min(H(t − 1, k − 1) + st + (p′ttk

+ e′trk
)dk, G(t, k − 1) + (p′ttk

+
e′trk

)dk, H(t− 1, k − 1) + st + ltk
dk, G(t, k − 1) + ltk

dk)
9: Update Gf (t, k), Gt(t, k), Gk(t, k) and Gp(t, k).

10: end if
11: if (t ≥ tk) then
12: G(t, k) ← min(H(t − 1, k − 1) + st + b′ttk

dk, G(t, k − 1) + b′ttk
dk, H(t − 1, k −

1) + st + ltk
dk, G(t, k − 1) + ltk

dk)
13: Update Gf (t, k), Gt(t, k), Gk(t, k) and Gp(t, k).
14: end if
15: H(t, k)← min(H(t− 1, k), G(t, k), H(t− 1, k − 1) + ltk

dk, H(t, k − 1) + ltk
dk)

16: Update Hf (t, k), Ht(t, k), Hk(t, k) and Hp(t, k).
17: end for
18: end for

The time complexity of the Algorithm is O(T 2). Let us recall that solving the
ULS-TW-ELB problem can also be equivalent to solving the ULS-TW-EB problem
if the backlogging to the end of the horizon is allowed as well as early producing
at period 0. In both cases, the backlogged quantities at period T or the early
production at period 0 are considered as lost sales. However, if a maximal number
of backlogging (or early producing) periods is imposed, then solving the ULS-TW-
ELB problem is relevant. Finally, a preprocessing phase on the cost computation
can be performed to define for each demand the strong and weak time windows as
proposed in Section 2.5.

5 Conclusion

New practical variants of the single item uncapacitated lot-sizing problem with
production time windows are proposed in this paper, when early production, lost
sale and backlog are allowed. In our extended models, the objective is to minimize
a function that aggregates production costs (fixed and variable costs), inventory
costs, lost sale costs, early production costs and backlog costs. We proposed several
properties of optimal solutions and derived dynamic programming algorithms with
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an O(T 2) time complexity where T denotes the number of periods. We showed that
the zero-inventory ordering policy (Wagner and Whitin property) does not hold for
lot-sizing problems with time windows. This property is replaced by a new one in
which no early production can occur at period t− 1 if a production takes place at
period t in an optimal solution. We also showed some other important properties
on lost sale, early production and backlog variables as well as time windows that
helped us in deriving the polynomial algorithms. The proposed algorithms can be
used in a Lagrangian relaxation procedure to calculate a lower bound for the multi-
item capacitated version of the proposed models. To obtain a near optimal solution
for these multi-item capacitated lot-sizing problems, a Lagrangian heuristic can be
developed to construct a feasible solution from the Lagrangian solutions. A further
research direction can be devoted to derive some properties for the customer specific
case with early production, lost sale and backlog.
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