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Abstract: We address a multi-item capacitated lot-sizing problem with setup times,
stock and demand shortages. Demand cannot be backlogged, but can be totally
or partially lost. Safety stock is an objective to reach rather than an industrial
constraint to respect. In this paper we consider an approach based on a lagrangean
relaxation of the capacity constraints to generate a lower bound of the optimal
value. This relaxation induces N single-item uncapacitated lot-sizing problems,
where N denotes the number of items. A polynomial algorithm is developed to solve
the sub-problems optimally. Some experimental results showing the effectiveness
of the approach are reported. Copyright c© 2006 IFAC
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1. INTRODUCTION

The Multi-item Capacitated Lot-sizing problem
with Setup times, Shortage costs and Safety Stock
deficit costs (MCLS4) is a production planning
problem in which there is a time-varying demand
for a set of N items over T periods. The produc-
tion should satisfy a restricted capacity and must
take into account a set of additional constraints.
Indeed, launching the production of an item i at
a given period t for a demand requirement dit

involves a variable resource consumption vit and
a setup time fit. The total available capacity at
period t is ct. For each period t, an inventory cost
γ+

it is attached to each item i as well as a variable
unit production cost αit and a setup cost βit.

1 This work has been partially financed by DYNASYS
S.A., under research contract no. 588/2002.

The problem has the distinctive feature of allow-
ing requirement shortages due to tight resource
capacities. Indeed, when we are in lack of capacity
to produce the total demand, we try to spread the
available capacity among the items by minimizing
the total amount of shortages. Thus, we introduce
in the model a unit cost parameter ϕit for item i at
period t for the requirement not met regarding the
demand. These costs should be viewed as penalty
costs and their values are very high in comparison
with other cost components.

The use of safety stock is widely prevalent in in-
dustry to counter variability that may be present
in a supply chain environment. In our study, a
safety stock is an objective to be reached rather
than an industrial constraint to respect. When
we cannot reach this target, we talk about safety
stock deficits for which we introduce a unitary
cost parameter γ−

it for each item i at each period
t. These costs should also be viewed as penalty



costs and their values are lower than shortage
costs and very high in comparison with other cost
components.

The MCLS4 problem consists in finding a pro-
duction planning that minimizes the shortages,
the safety stock deficits as well as the setup, the
inventory and the production costs.

The new characteristics introduced in this paper
are frequently encountered in process industries.
They model real-world problems where the capac-
ities are tight and the most important objectives
are to try to meet the maximum amount of client’s
needs and to reach the safety stock levels.

(Chen and Thizy, 1990) have proved that the
multi-item capacitated lot-sizing problem with
setup times is strongly NP-hard.

There are few references dealing with lot-sizing
problems with shortage costs or safety stocks.
Recently, (Aksen et al., 2003) addressed the un-
capacitated single-item lot-sizing problem with
shortage costs. The authors proposed an O(T 2)
forward dynamic programming algorithm to solve
the problem. (Loparic et al., 2001) proposed valid
inequalities for the single-item uncapacitated lot-
sizing problem with lower bounds on the stock
variables and the objective of maximizing sales.

(Diaby et al., 1992) deal with lack of capacity by
considering overtimes. (Zangwill, 1966; Zangwill,
1969) proposed a model with backlogs where the
demands must be satisfied with an extra cost if
there is a delay.

The main contributions of this paper are twofold.
First, we develop a polynomial algorithm to solve
the uncapacitated single-item lot-sizing problem
with shortage on demand and safety stock deficit
costs (ULS4) optimally. Second, we use an ap-
proach based on a lagrangean relaxation of the
capacity constraints to solve the MCLS4 problem.

An outline of the remainder of the paper follows.
Sections 2 and 3 describe MIP formulations of
the MCLS4 problem and its capacity constraints
relaxation. In section 4 we state some properties
of the ULS4 optimal solutions and we describe
a polynomial algorithm to solve it. Finally, com-
putational results are given in section 5 to show
the effectiveness of the approach based on a la-
grangean relaxation of capacity constraints.

2. FORMULATION OF THE MCLS4
PROBLEM

In this section we present a MIP formulation of
the MCLS4 problem. In the remainder of the
section, we consider that i = 1, . . . , N and t =
1, . . . , T . We set xit as the quantity of item i

produced at period t. We need also to define yit as
a binary variable equal to 1 if item i is produced
at period t (i.e. if xit > 0) to deal with the fixed
setup times and costs. The variable sit for item i
is the inventory value at the end of period t. The
shortage for item i at period t is modelled by a
non negative variable rit with a high unit penalty
cost in the objective function, because the main
goal is to satisfy the customer and thus to have the
minimum amount of the requirements not met.

Let I+
it and I−it represent respectively overstock

and safety stock deficit variables of item i at
period t. I−it has a high unit penalty cost in the
objective function. However, this penalty is lower
than shortage cost. We set lit as a parameter
which represents safety stock value of item i at
period t. Thus, the stock of item i at period
t is given by the expression I+

it + lit − I−it . We
set δit = lit − li(t−1) which is the safety stock
variation between two consecutive periods, it can
be positive or negative. The MCLS4 problem is
described by the following MIP:

min
∑

i,t

(αitxit + βityit + ϕitrit + γ+
it

I+
it

+ γ−

it
I−
it

) (1)

I+
i(t−1)

− I−
i(t−1)

+ rit + xit = dit + δit + I+
it
− I−

it
, (2)

∑

i

vitxit + fityit ≤ ct, ∀t (3)

xit ≤Myit, ∀i, t (4)

rit ≤ dit, ∀i, t (5)

I−
it
≤ lit, ∀i, t (6)

xit, rit, I
+
it

, I−
it
≥ 0, ∀i, t (7)

yit ∈ {0, 1}, ∀i, t (8)

The objective function (1) minimizes the total
cost induced by the production plan (unit produc-
tion costs, inventory costs, shortage costs, safety
stock deficit costs and setup costs). Constraints
(2) are the inventory flow conservation equa-
tions through the planning horizon. Constraints
(3) are the capacity constraints; the overall con-
sumption must remain lower than the available
capacity. If we produce an item, then the pro-
duction must not exceed a maximum produc-
tion level M (constraints (4)). M could be set
to the minimum between the total requirement
on section [t, T ] of the horizon and the high-
est quantity of item i that can be produced,

M = min
(∑T

t′=t dit′ ; (ct − fit)/vit

)
. Constraints

(5) and (6) define upper bounds on respectively
the shortage and the safety stock deficit for item
i on period t. Constraints (7) and (8) charac-
terize the variable’s domains: xit, rit, I

+
it and I−it

are non-negative and yit is a binary variable for
i = 1, . . . , N and t = 1, . . . , T .



3. RELAXING THE RESOURCE CAPACITY
CONSTAINTS

The general idea behind the lagrangean relaxation
approach is to decompose the large multi-item
capacitated lot-sizing problem into smaller single-
item uncapacitated lot-sizing sub-problems. This
is possible by relaxing the resource capacity con-
straints while using a set of lagrange multipliers
πt in the objective function of the MCLS4 model.
The capacity constraints (3) are considered as
coupling constraints in the sense that they prevent
the separation into single-item sub-problems.

The lagrangean relaxation of the MCLS4 ca-
pacity constraints decomposes the problem into
N single-item uncapacitated lot-sizing problems
with shortage and safety stock deficit costs de-
noted ULS4. Since we consider each item sep-
arately, it may be more convenient to remove
the item index to facilitate the reading of the
remaining mathematical formulations. The ULS4
problem is described in what follows:

min
∑

t

αtxt + βtyt + γ+
t I+

t + γ−

t I−t + ϕtrt

+
∑

t

πt (vtxt + ftyt) (9)

I+
t−1 − I−

t−1 + xt + rt = dt + δt + I+
t − I−t , ∀t (10)

xt ≤Myt, ∀t (11)

rt ≤ dt, ∀t (12)

I−t ≤ lt, ∀t (13)

xt, rt, I
+
t , I−t ≥ 0, ∀t (14)

yt ∈ {0, 1}, ∀t (15)

To the best of our knowledge, the ULS4 problem
was never addressed in the literature. It is an
extension of the classical ULS problem (Wagner
and Whitin, 1958). If we remove rt and I−t from
the model we obtain the ULS model which is
solvable in O(T log T ) (Wagelmans et al., 1992).
If we remove only I−t variables, we obtain the
ULS model with shortage costs. This problem was
solved in O(T 2) by (Aksen et al., 2003). If we
remove rt, δt and the constraint (13), we obtain
the ULS model with backlogs. This problem was
solved in O(T 2) by (Zangwill, 1969).

4. DYNAMIC PROGRAMMING ALGORITHM
FOR SOLVING ULS4

In this section, we propose a fixed charge network
model for the ULS4 problem. We present also
some properties of the ULS4 optimal solutions.
These properties enable us to propose a recursive
dynamic programming algorithm for solving the
problem in polynomial time in the worst case.

4.1 Fixed charge network formulation

Figure 1 corresponds to a fixed charge network
presentation of ULS4 problem. Vertices 1 to T
represent the periods of the problem. Vertex 0
represents the principal source, its availability is
equal to D =

∑T

t=1 (dt + δt) =
∑T

t=1 dt + lT − l0,
with l0 = 0. X and R are two transhipment nodes
which transfer respectively the total demand and
the sum of the shortages. The remainder of the
transhipment transits from node T , that is the
maximum deficit on safety stock at the last period.
It’s obvious that the sum of inputs at nodes X ,
R and T is equal to quantity which transit from
node 0. Each node t ∈ {1, 2, . . . , T} has a need
equal to δt, δt = lt − lt−1. δt can be positive
or negative. Nodes {1′, 2′, . . . , T ′} represent the
demands dt at periods t ∈ {1, . . . , T}. At each
node t ∈ {1′, 2′, . . . , T ′}, we have a demand dt.
The arcs of this graph are defined as follows:

• (X, t) are the production arcs, t ∈
{1, 2, . . . , T}. They represent the quantity
produced at period t,

• (t, t + 1) are the inventory arcs, t ∈
{1, 2, . . . , T − 1}. Each arc represents the
ending stock of period t and the entering
stock at period t + 1,

• (t, t − 1) are the safety stock deficit arcs,
t ∈ {2, . . . , T}. They represent the safety
stock deficit of period t − 1. The capacity of
this arc is limited to lt,

• (t, t′) arcs represent the satisfied demand
at period t, t ∈ {1, 2, . . . , T} and t′ ∈
{1′, 2′, . . . , T ′},

• (R, t′) arcs represent the shortage at period
t, t′ ∈ {1′, 2′, . . . , T ′}.

0 1 2 3 4 T

X

1’ 2’ 3’ 4’ T’

R

. . .

. . .

Fig. 1. Fixed charge network model for ULS4

All the cost functions on this network are concave.
In fact, the costs on arcs (t, t′), (0, X) and (0, R)
are equal to zero. The arcs (R, t′) have a unitary
cost equal to ϕt. The arcs (t, t + 1) and (t, t − 1)
have unitary costs equal to γ+

t and γ−
t respec-

tively. The cost on the production arcs (X, t) is
equal to zero if the flow xt is null and (βt +πtft +
(αt + πtvt)xt) if the flow xt is positive.



Finding an optimal solution to the ULS4 problem
is equivalent to finding an extreme flow with
minimum cost on the network of figure 1.

4.2 Characterization of the ULS4 optimal solution

In order to propose a dynamic programming al-
gorithm to solve the ULS4 problem, we present
some properties of the optimal solutions. We first
begin with some definitions.

Definition 1. A period t is a production point
if xt > 0.

Definition 2. A period t is an inventory point
if (I+

t = 0 and I−t = 0) or (I+
t = 0 and I−t = lt).

More precisely, a period t is an:

• Inventory point of type 1 if I+
t = 0 and

I−t = 0;
• Inventory point of type 2 if I+

t = 0 and
I−t = lt.

Definition 3. A feasible flow (x̂, r̂, Î+, Î−) is an
extreme flow if there does not exist feasible flows
(x̂1, r̂1, Î

+
1 , Î−1 ) and (x̂2, r̂2, Î

+
2 , Î−2 ) such that:

(x̂, r̂, Î+, Î−) = (x̂1, r̂1, Î
+
1 , Î−1 ) + (x̂2, r̂2, Î

+
2 , Î−2 )

It is well known (Zangwill, 1968) that if the
objective function has a finite global minimum
on the feasible region, then there must be an
extreme flow which is an optimal flow. Since the
feasible region has a finite number of extreme
flows, a search of all extreme flows will give the
optimal flow. However, such a procedure might be
extremely hard. In what follows, we present some
characteristics of the extreme flows of ULS4 which
will allow us to facilitate this search.

Lemma 1.

I+
t I−t = 0 for all t ∈ 1, . . . , T .

Proof. This result derives from the fact that an
extreme flow uses a set of arcs forming a tree.
Hence, we can not have I+

t > 0 and I−t > 0. 2

Proposition 1.

The following propositions are equivalent:

• (x̂, r̂, Î+, Î−) is an extreme flow of ULS4;

• (x̂, r̂, Î+, Î−) is feasible and between every
pair of production points (i, k) / i < k, there
exists an inventory point j / (i ≤ j < k).

Proof. Suppose that we have two production
points i and k with i < k and there is no inventory
point between these two points in an extreme flow.
This implies that for all the vertices t between i

and k we have either (I+
t > 0 and I−t = 0) or

(I+
t = 0 and 0 < I−t < lt) (Lemma 1, Definition

2). This extreme flow contain a cycle where there
is no edge fixed to its bound. If such a cycle exists
in an extreme flow, then this flow can easily be
expressed according to two other feasible flows.
This proves that such a flow is not extreme and
contradicts the assumption. 2

The following proposition is equivalent to those of
proposition 1:

• (x̂, r̂, Î+, Î−) is feasible and between every
pair of adjacent inventory points there exists
at most one production point.

4.3 Dynamic programming algorithm

Based on the properties of the optimal solutions,
we develop a dynamic programming algorithm to
solve the ULS4 problem. We have proved in the
last section that a feasible solution is an extreme
flow if and only if between every couple of adjacent
inventory points i, k with i < k, there exists
at most a production point j (i < j ≤ k). To
find the optimal solution, it suffices to search all
the extreme flows that satisfy these properties
and identify the minimum cost extreme flow. The
general idea of the algorithm is to consider all
the triplets (i, j, k) (with i < j ≤ k, i and k are
inventory points, and j is a production point) and
to find the sequence of triplets (i, j, k) with the
minimum cost value. For each triplet (i, j, k) we
define a sub-problem which we solve optimally.

We define a restricted problem ULS4 denoted
ULS4uv

ijk. The indices u and v characterize the
inventory points (Type 1 or 2). Indice u (resp. v) is
fixed to 0 if the period i−1 (resp. k) is an inventory
point of type 1. Indice u (resp. v) is fixed to 1 if
the period i − 1 (resp. k) is an inventory point
of type 2. If we assume that {i, . . . , k} represent
the set of integers from i to k, ULS4uv

ijk is defined
on the interval of periods {i, . . . , k}. There is a
production only at period j, the production at
periods t ∈ {i, . . . , k} \ j is null (xt = 0). We
denote Zuv

ijk the optimal value of the objective
function of the problem ULS4uv

ijk. ULS4uv
ijk can be

solved using a minimum cost flow algorithm.

To find the value of Zuv
ik on the interval i, . . . , k,

we search the minimum between all the opti-
mal policies on the interval {i, . . . , k} with j the
unique production period (i < j ≤ k) and the
optimal policy on the interval {i, . . . , k} with no
production period (denoted Zuv

i0k).

Zuv
ik = min

[
Zuv

i0k, min
i<j≤k

Zuv
ijk

]
(16)



An optimal basis for the ULS4 solution corre-
sponds to the minimum value of a sequence of
adjacent inventory points intervals. The function
Fu

k defines the minimum value of the adjacent in-
ventory point sequence from period 1 to period k,
this function can be calculated using the following
recursive formula:

F v
k = min

i≤k;u=0,1

{
Fu

i−1 + Zuv
ik

}
(17)

The optimal value of ULS4 problem is given by
FT = minv=0,1 F v

T .

The algorithm is described as follows:

Algorithm 1 Algorithm to solve ULS4
1: u← 0, v ← 0
2: for all t ∈ {1, . . . , T} and u ∈ {0, 1} do

3: F u
t ← +∞, F u

0 ← 0
4: end for

5: for i = 1 T − 1 do

6: for k = i + 1 T do

7: repeat

8: Calculate Zuv
i0k

, Zuv
ik
← Zuv

i0k

9: for j = i + 1 k do

10: Calculate Zuv
ijk

, Zuv
ik
← min

[
Zuv

ik
, Zuv

ijk

]

11: end for

12: F v
k
← min

{
F v

k
, F u

i−1 + Zuv
ik

}

13: v ← 1− v

14: if v = 0 then

15: u← 1− u

16: end if

17: until u = 0 and v = 0
18: end for

19: end for

20: FT = minu=0,1 F u
T

4.4 Algorithm complexity

The ULS4uv
ijk problems can be solved using a

minimum cost flow algorithm. The best strongly
polynomial minimum cost flow algorithm is pro-
posed by (Orlin, 1993). It solves the problem in
O(m log n(m+n logn)), where m and n represent
respectively the number of arcs and the number
of nodes of the network.

In the worst case, the number of vertices of the
network which represents the problem Zuv

ijk is 2T+
3 and the number of arcs is 5T +1. Then, n = 2T+
3 and m = 5T + 1. The calculation of Zuv

ijk is

done in O(T 2 log2 T ). The global complexity of
the algorithm that solves ULS4 is O(T 5 log2 T ).

5. COMPUTATIONAL EXPERIMENTS

In this section, we present experimental results re-
sulting from the application of the lagrangean re-
laxation of the capacity constraints of the problem
MCLS4. Our algorithms are implemented in the
C++ programming language and are integrated

in an APS software. We use the callable CPLEX
9.0 library to solve the MIP problems.

We have performed computational tests on a se-
ries of extended instances from the lot-sizing li-
brary LOTSIZELIB, initially described in (Trigeiro
et al., 1989). These instances are denoted trN−T ,
where N is the number of items and T is the
number of periods. These are characterized by a
variable resource consumption equal to one, and
enough capacity to satisfy all the requirement over
the planning horizon. They are also characterized,
by an important setup cost, a small setup time and
no safety stock.

Since these instances have enough capacity to
satisfy all the requirements over the planning
horizon, we have performed our experiments on
the class B of instances described in (Absi and
Kedad-Sidhoum, 2005). These new instances are
obtained by increasing the resource requirements
and adding safety stocks to (Trigeiro et al., 1989)
instances.

The lagrangean sub-problems obtained at each
step of the lagrangean relaxation are solved op-
timally using CPLEX 9.0 solver for the model
ULS4 described in section 2. However, it would
be interesting to use a polynomial minimum cost
flow algorithm. We use a subgradient method
to calculate these multipliers. The upper bounds
used to calculate the lagrangean multipliers are
obtained using a MIP-based heuristic described
in (Absi and Kedad-Sidhoum, 2005). The CPU-
time needed to obtain these upper bounds varies
between 1 and 40 seconds for our test instances.
The lagrangean relaxation parameters are fixed
according to the schema proposed by (Held et

al., 1974).

We have measured the quality of the lower bounds
obtained using the lagrangean relaxation (denoted
LR) by comparing them with the lower bounds
obtained with a monolithic resolution of the ini-
tial MCLS4 problem (denoted BC). The MCLS4
problem as well as the generated sub-problems at
each step of the lagrangean relaxation are solved
using the standard branch-and-cut of CPLEX 9.0
solver.

For the two algorithms, LB and UB represent
respectively the lower bound and the upper bound
values at the termination of the algorithm. The
algorithm comparisons are also based on the fol-
lowing criteria. The first one called GAP is equal
to (UB − LB) /UB, and the second one is a CPU-
time denoted Tm. Md represents the method that
is used. The BC method stops if a time-limit of
900 seconds is reached. The LR method stops if
a maximum number of 100 iterations is reached.
Table 1 summarizes the computational behaviour
of the approach.



Table 1. Experimental results

N T Md GAP UB LB Tm

6 15 BC 1,7% 5825939 5728964 900
6 15 LR 3,3% 5858168 5665290 26

6 30 BC 4,0% 7814548 7501442 900
6 30 LR 3,5% 7832065 7555426 89

12 15 BC 3,5% 13308806 12838374 900
12 15 LR 4,1% 13292194 12749866 69

12 30 BC 14,9% 17044633 14510544 900
12 30 LR 9,8% 16988946 15330246 233

24 15 BC 6,4% 28685166 26854630 900
24 15 LR 3,7% 28655048 27587051 134

24 30 BC 12,9% 46005650 40053010 900
24 30 LR 8,9% 45512020 41459351 351

From table 1 we can notice that the LR method
gives generally better lower bounds than BC
method, CPU times are also clearly lower. We also
can notice that the GAPs obtained by the LR
method are better than those obtained by BC for
the instances of bigger size.

Figure 2 represents the GAP variation of the LR
method according to the number of lagrangean
relaxation iterations which varies from 0 to 200.
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Fig. 2. Lagrangean relaxation

From Figure 2 we can notice that instances with
30 periods need more iterations than instances
with 15 periods to converge and the instances
with more items need also more iterations. In
fact, instances with 15 periods converge to a good
solution after 100 iterations, when instances with
30 periods converge after 140 iterations.

6. CONCLUSION

In this paper, we propose a mathematical for-
mulation of a new multi-item capacitated lot-
sizing problem with setup times. This formulation
takes into account several industrial constraints,
shortage costs and safety stock deficit costs. To
derive a good lower bound, we have used an
approach based on the lagrangean relaxation of
the resource capacity constraints. We have also
proposed an algorithm that solves the induced
single-item sub-problems optimally by solving T 3

minimum cost flow problems where T denotes
the number of periods. It would be interesting

to implement a specific minimum cost flow algo-
rithm to get a better time complexity in prac-
tice. Several issues could be pursued. The com-
plexity can be improved using a geometric ap-
proach (Wagelmans et al., 1992). Moreover, the
lagrangean solutions could be used to construct
feasible solutions (Trigeiro et al., 1989) or in a
branch-and-bound framework.
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