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Abstract

We address a multi-item capacitated lot-sizing problem with setup times, safety

stock and demand shortages. Demand cannot be backlogged, but can be totally or

partially lost. Safety stock is an objective to reach rather than an industrial con-

straint to respect. The problem is np-hard. We propose a Lagrangian relaxation of

the resource capacity constraints. We develop a dynamic programming algorithm to

solve the induced sub-problems. An upper bound is also proposed using a Lagrangian

heuristic with several smoothing algorithms. Some experimental results showing the

effectiveness of the approach are reported.
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1 Introduction

The problem under consideration in this paper arises from industrial contexts. The produc-
tion planning problems encountered in real-life situations are generally intractable due to a
number of practical constraints. The decision maker has to find a good feasible solution in a
reasonable execution time rather than an optimal one. The multi-item capacitated lot-sizing
problem with setup times, demand shortage costs and safety stock deficit costs referred to
as MCLSS, is a production planning problem in which there is a time-varying demand for
a set of N items over T periods. The production should satisfy a restricted capacity and
must take into account a set of additional constraints. Indeed, launching the production
of an item i at a given period t for a demand requirement dit involves a variable resource
consumption vit and a setup time fit. The total available capacity at period t is ct. For
each period t, an inventory unitary cost γ+

it is attached to each item i as well as a variable
unitary production cost αit and a setup cost βit.

The problem has the distinctive feature of allowing demand shortages due to tight re-
source capacities. Indeed, when we are in lack of capacity to produce the total demand,
we try to spread the available capacity among the items to minimize the total amount of
demand shortages. Thus, we introduce in the model a unit cost parameter ϕit for item i at
period t for the unmet amount of demand. These costs should be viewed as penalty costs
and their values are very high in comparison with other unitary cost components.
∗Corresponding author. E-mail: absi@emse.fr
†This work has been partially financed by DYNASYS S.A., under research contract no. 588/2002.
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The use of safety stock is widely observed in industry to counter variability that may be
present in a supply chain environment. In our study, a safety stock is an objective to reach
rather than an industrial constraint to respect. When we cannot reach this target, we talk
about safety stock deficits for which we introduce a unitary cost parameter γ−it for each item
i at each period t. These costs should also be viewed as penalty costs and their values are
lower than the shortage costs and very high in comparison with other cost components.

The MCLSS problem consists of finding a production plan that minimizes the demand
shortages, the safety stock deficits as well as the setup, the inventory and the production costs
allover the planning horizon. Chen and Thizy [8] proved that the multi-item capacitated
lot-sizing problem with setup times is strongly NP-hard. There are many references dealing
with the capacitated lot-sizing problem. We can quote the general review of Maes and Van
Wassenhove [18] for heuristics developed to solve the problem, and the paper of Dogramaci
et al. [10] that describes the so-called four-step heuristic. There are few references dealing
with lot-sizing problems with shortage costs or safety stocks. Recently, Absi and Kedad-
Sidhoum [2] proposed some Mixed Integer Programming (MIP) based heuristics to solve the
MCLSS problem with additional constraints such as setup groups, operating sets, and lower
and upper bounds on production. The same authors [3] developed also a branch-and-cut
algorithm for the MCLSS problem without safety stocks. Aksen et al. [6] addressed the
uncapacitated single-item lot-sizing problem with shortage costs. The authors proposed an
O(T 2) forward dynamic programming algorithm to solve the problem. Loparic et al. [17]
proposed valid inequalities for the single-item uncapacitated lot-sizing problem with lower
bounds on the stock variables where the objective is to maximize the sales. Diaby et al.[9]
dealt with the lack of capacity by considering overtimes and Zangwill [25, 27] proposed a
model with backlogs where the demands must be satisfied with an extra cost if delayed.
We can also quote some related works dealing with the goodwill loss concept in lot-sizing
literature. This concept was first mentioned by Hsu and Lowe [15]. The authors comment
that production loss or customer goodwill loss may lead to a unit penalty cost for unsatisfied
demand that grows in a nonlinear fashion, and is dependent on how long that demand has
been back-ordered. Also inventory holding costs may be dependent on how long the items
have been in stock. In [13], we come across goodwill loss again. The author formulates
two models, one for the lost sales case, and another for the backorders. He assumes that
the demand that cannot be met in a period is lost, and a loss of customer goodwill would
manifest itself in terms of reduced future sales. A recent work of Aksen [5] improves the
models, and proposes that a ratio of realized demand that goes unsatisfied in the current
period be deducted from the original demand of the next period. Recently, Süral et al. [21]
propose some efficient Lagrangian relaxation based heuristics for a lot-sizing problem with
setup times where the objective is to minimize the total inventory carrying cost.

The main contribution of this paper is twofold. First, we develop a polynomial algorithm
to solve the uncapacitated single-item lot-sizing problem with demand shortage and safety
stock deficit costs (ULSS) optimally. Second, we develop a Lagrangian relaxation of the
capacity constraints to obtain lower and upper bounds for the MCLSS problem.

An outline of the remainder of the paper is as follows. Section 2 describes a MIP formu-
lation of the MCLSS problem. In Section 3, a Lagrangian relaxation of capacity constraints
is presented. We state some properties of the optimal solutions of the ULSS problem, and
we describe a polynomial algorithm to solve it. Section 4 illustrates a Lagrangian relaxation
framework as well as a heuristic to construct feasible solutions for the MCLSS problem. Fi-
nally, computational results are given in Section 5 to show the effectiveness of the developed
method based on a Lagrangian relaxation of capacity constraints.
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2 Mathematical formulation and complexity

2.1 An aggregate formulation

In this section, we present a MIP formulation of the MCLSS problem. For a finite planning
horizon of T periods and a number of items N , we set xit as the quantity of item i produced
at period t and yit as a binary variable equal to 1 if item i is produced at period t (i.e. if
xit > 0) inducing fixed setup times and costs. The variable sit for item i is the inventory
value at the end of period t. The shortage for item i at period t is modeled by a nonnegative
variable rit with a high unit penalty cost ϕit in the objective function, the main goal is
indeed to satisfy the customer and thus to have the minimum amount of demands not met.

Let s+it and s−it represent respectively overstock and safety stock deficit variables of item
i at period t. s−it has a high unit penalty cost γ−it in the objective function. However, this
penalty is lower than the shortage cost. We set lit as a parameter which represents the
safety stock value of item i at period t. Thus, the stock of item i at period t is given by
the expression s+it + lit − s−it . Moreover, we set δit = lit − li,t−1 which is the safety stock
variation between two consecutive periods. It can be positive or negative. Furthermore,
I = {1, · · · , N} and T = {1, · · · , T} denote respectively the set of items and the set of
periods. The MCLSS problem is described by the following MIP:

min
∑
i∈I

∑
t∈T

(
αitxit + βityit + ϕitrit + γ+

its
+
it + γ−its

−
it

)
(1)

s.t. (2)

s+i,t−1 − s
−
i,t−1 + rit + xit = dit + δit + s+it − s

−
it, ∀i ∈ I, t ∈ T (3)∑

i∈I
(vitxit + fityit) ≤ ct, ∀t ∈ T (4)

xit ≤Mityit, ∀i ∈ I, t ∈ T (5)

rit ≤ dit, ∀i ∈ I, t ∈ T (6)

s−it ≤ lit, ∀i ∈ I, t ∈ T (7)

xit, rit, s
+
it, s
−
it ≥ 0, ∀i ∈ I, t ∈ T (8)

yit ∈ {0, 1}, ∀i ∈ I, t ∈ T (9)

The objective function (1) minimizes the total cost induced by the production plan that
is production costs, inventory costs, shortage costs, safety stock deficit costs and setup costs.
Constraints (3) are the inventory flow conservation equations through the planning horizon.
Constraints (4) are the capacity constraints; the overall consumption must remain lower
than or equal to the available capacity. If we produce an item i at period t, then constraints
(5) impose that the quantity produced must not exceed a maximum production level Mit.
Mit could be set to the minimum between the total demand requirement for item i on section
[t, T ] of the horizon and the highest quantity of item i that could be produced regarding
the capacity constraints, Mit is then equal to min

{∑T
t′=t dit′ , (ct − fit)/vit

}
. Constraints

(6) and (7) define upper bounds on respectively the demand shortage and the safety stock
deficit for item i in period t. Constraints (8) and (9) characterize the variable’s domains:
xit, rit, s

+
it and s−it are non-negative and yit is a binary variable for i ∈ I and t ∈ T .

2.2 A disaggregate formulation

Another formulation for the MCLSS problem is based on the facility location formulation
initially proposed by Krarup and Bilde [16] for the uncapacitated single-item problem. A
decision variable zirt is used for the quantity of item i that is produced in period r to satisfy
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a demand in period t. This implies that
∑T
t=r zirt = xir. The inventory of item i at period

t is given by
(
s+it + lit − s−it

)
which is equal to

∑t
t′=0

∑T
t′′=t+1 zit′t′′ . We define a new cost

parameter α′itt′ = αit + γ+
it + γ+

i,t+1 + . . . + γ+
i,t′−1 for t ≤ t′. Using the variables zirt, the

MCLSS problem is :

min
∑

i∈I,t∈T

(
T∑

t′=t

α′itt′zitt′ + βityit + ϕitrit + (γ+
it + γ−it )s−it − γ

+
it lit

)
(10)

s.t. (11)

rit +
t∑

r=1

zirt = dit, ∀i ∈ I, t ∈ T (12)

∑
i∈I

vit

T∑
t′=t

zitt′ +
∑
i∈I

fityit ≤ ct, ∀t ∈ T (13)

zirt ≤Mirtyir, ∀i, t, r ≤ t (14)

rit ≤ dit, ∀i ∈ I, t ∈ T (15)

s−it ≤ lit, ∀i ∈ I, t ∈ T (16)

s−it +
t∑

t′=0

T∑
t′′=t+1

zit′t′′ ≥ lit, ∀i ∈ I, t ∈ T (17)

rit, s
−
it, zirt ≥ 0, ∀i, t, r ≤ t (18)

yit ∈ {0, 1}, ∀i ∈ I, t ∈ T (19)

Constraints (12) ensure that the demand in period t is either satisfied by the production
for period t performed in previous periods or the demands are not met. Constraints (13) are
the capacity constraints; the overall consumption must remain lower than or equal to the
available capacity. If we produce an item i in period t, then constraints (14) impose that
the quantity produced must not exceed a maximum production level Mirt. Mirt could be
set to the minimum between the demand requirement for item i at period t (dit) and the
highest quantity of item i that could be produced regarding the capacity constraints. Mirt

is then equal to min {dit, (ct − fir)/vir}. Constraints (15) and (16) define upper bounds
on respectively the demand shortage and the safety stock deficit for item i in period t.
Constraints (17) ensure that the total quantity given by the inventory level and the safety
stock deficit are greater than or equal to the safety stock level at period t. Constraints
(18) and (19) characterize the variable’s domains: rit, s−it and zirt are non-negative and yit
is a binary variable for i ∈ I and t ∈ T . We also consider the following valid inequality
that can strengthen the disaggregate formulation:

∑T
r=t zitr ≤ M ′ityit, where M ′it is equal

to min
{∑T

t′=t dit′ , (ct − fit)/vit
}

for an item i and a period t.

3 Lagrangian based lower bounds

3.1 Relaxing the resource capacity constraints

The general idea behind the Lagrangian relaxation approach is to decompose the multi-
item capacitated lot-sizing problem into single-item uncapacitated lot-sizing sub-problems.
This is possible by relaxing the resource capacity constraints (4) while using a set of La-
grange multipliers πt ≥ 0 in the objective function of the MCLSS model. We derive then a
Lagrangian function denoted by L (x, y, r, s+, s−, π).

The Lagrangian relaxation of the capacity constraints of the MCLSS problem decomposes
the model into N single-item uncapacitated lot-sizing problems with shortage and safety
stock deficit costs which will be denoted as ULSS. Since we consider each item separately, it
may be more convenient to discard the item index i to facilitate the reading of the following
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mathematical model. The aggregate formulation of the ULSS problem is described in what
follows:

min
∑
t∈T

(
αtxt + βtyt + ϕtrt + γ+

t s
+
t + γ−t s

−
t

)
+
∑
t∈T

πt (vtxt + ftyt − ct) (20)

s+t−1 − s
−
t−1 + rt + xt = dt + δt + s+t − s−t , ∀t ∈ T (21)

xt ≤Mtyt, ∀t ∈ T (22)

rt ≤ dt, ∀t ∈ T (23)

s−t ≤ lt, ∀t ∈ T (24)

xt, rt, s
+
t , s
−
t ≥ 0, ∀t ∈ T (25)

yt ∈ {0, 1}, ∀t ∈ T (26)

To the best of our knowledge, the ULSS problem was never addressed before in the
literature. Therefore, we can recall that the model is an extension of the classical single
item uncapacitated lot-sizing problem addressed by Wagner and Whithin [24]. Indeed, if we
remove rt and s−t from the model, it is solved in O(T 2). This complexity was more recently
improved [4], [11], [23]. Indeed, there are algorithms running in O(T logT ) or even in linear
time when costs are constant for all periods. We can notice that if we remove only the s−t
variables, we obtain a model with shortage costs which is solved in O(T 2) [6]. If we remove
rt, δt and the constraints (24), we obtain a model with backlogs which is also solved in
O(T 2) [27].

3.2 Fixed-charge network formulation

In this section, we propose a fixed-charge network model for the ULSS problem. The set
of vertices is defined by the set of periods 1 to T of the problem. Vertex 0 is a dummy
vertex that represents the principal source. Its supply is equal to D =

∑T
t=1 (dt + δt) =∑T

t=1 dt + lT − l0, with l0 = 0.
X and R are two transshipment nodes which transfer respectively the total demand and

the sum of the shortages. The remainder of the transshipment transits through node T ,
that is the maximum deficit on safety stock at the last period. It is obvious that the sum
of the inputs at nodes X, R and T is equal to the total quantity which transits through
node 0. For each node t ∈ {1, 2, . . . , T}, we associate the quantity δt = lt − lt−1. δt can
be positive or negative. In the same way, nodes {1′, 2′, . . . , T ′} represent the demands dt in
periods t ∈ {1, 2, . . . , T}. The arcs of the network can thus be defined as follows:

• (X, t) are the production arcs for t ∈ {1, 2, . . . , T}. The flow in arc (X, t) represents
the quantity produced at period t,

• (t, t + 1) are the inventory arcs for t ∈ {1, 2, . . . , T − 1} with a flow representing the
ending stock of period t and the entering stock in period t+ 1,

• (t, t − 1) are the safety stock deficit arcs for t ∈ {2, . . . , T}. The flow in these arcs
represents the safety stock deficit of period t − 1. The capacity of this arc is limited
to lt,

• the flow in arc (t, t′) represents the demand that is met at period t for t ∈ {1, 2, . . . , T}
and t′ ∈ {1′, 2′, . . . , T ′},

• the flow in arc (R, t′) represents the shortage at period t for t′ ∈ {1′, 2′, . . . , T ′}.
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Figure 1 corresponds to a fixed-charge network representation of ULSS problem.

R

0 1 2 3 4 T

X

1′ 2′ 3′ 4′ T ′

d4d2d1 d3

x1 x2 x3 x1 x5

d1 − r1 d2 − r2 d3 − r3 d4 − r4

r1 r2 r3 r3

∑T
t=1 dt + lT

dT − rT

dT

s+4

s−4
. . .

rT

δ1 δ2 δ3 δ4 δT

s+1

s−1

s+2

s−2

s+3

s−3 s−T−1

s+T−1

. . .

s−T

Figure 1: Fixed-charge network model for ULSS.

All the cost functions are concave. Indeed, the costs on arcs (t, t′), (0, X) and (0, R)
are equal to zero. The arcs (R, t′) have a unitary cost equal to ϕt. The arcs (t, t + 1) and
(t, t − 1) have unitary costs equal respectively to γ+

t and γ−t . The cost on the production
arcs (X, t) is equal to zero if the flow xt is null and βt + πtft + (αt + πtvt)xt if the flow xt
is positive.

Finding an optimal solution to the ULSS problem is equivalent to finding a minimum
cost extreme flow on the network depicted in figure 1. In the next section, we characterize
the optimal solutions of the ULSS problem based on the fixed-charge network formulation.

3.3 Characterization of the ULSS optimal solutions

We present some properties of the ULSS optimal solutions. These properties enable us to
propose a recursive dynamic programming algorithm for solving the problem in polynomial
time in the worst case. We first begin with a definition.

Definition 1. A feasible flow (x̂, r̂, ŝ+, ŝ−) is an extreme flow if there does not exist fea-
sible flows (x̂1, r̂1, ŝ

+
1 , ŝ
−
1 ) and (x̂2, r̂2, ŝ

+
2 , ŝ
−
2 ) such that: (x̂, r̂, ŝ+, ŝ−) = (x̂1, r̂1, ŝ

+
1 , ŝ
−
1 ) +

(x̂2, r̂2, ŝ
+
2 , ŝ
−
2 ).

It is well known that if the objective function has a finite global minimum on the feasible
region, then there must be an extreme flow which is an optimal flow [26]. Since the feasible
region has a finite number of extreme flows, a search of all extreme flows will give the optimal
flow. However, such a procedure might not be efficient. In what follows, we present some
characteristics of the extreme flows of ULSS which will allow us to facilitate this search.
The asterisk-superscripted variables in the lemmas and proofs signify optimal values.
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The following lemma suggests that in an optimal solution, the overstock could not be
strictly positive if we can not meet the level of the safety stock.

Lemma 1.
s+∗t s−∗t = 0 for all t ∈ 1, . . . , T .

Proof. This result derives from the fact that an extreme flow uses a set of unsaturated
arcs that represents a tree [24]. Hence, we cannot have s+t > 0 and s−t > 0 since the costs
on these arcs are non negative. The proof is made by contradiction. Let us suppose that
we have s+∗t > 0 and s−∗t > 0 for a given period t at optimality. Then, decreasing s−∗t to
(s−∗t − δ) and reducing s+∗t to (s+∗t − δ) maintains feasibility of the solution while lowering
the total cost of the solution by (γ−t + γ+

t )δ. The solution could not be optimal which is a
contradiction.

In an optimal solution, we cannot have in a given period, demand shortage and produc-
tion at the same time. More formally:

Lemma 2.
r∗t x
∗
t = 0 for all t ∈ 1, . . . , T .

The proof uses the same arguments as Lemma 1 on the shortage and production vari-
ables. We next define several terms that will be useful to derive the dynamic programming
algorithm.

Definition 2. A period t is a production point if xt > 0.

Definition 3. A period t is an inventory point if (s+t = 0 and s−t = 0) or (s+t = 0 and
s−t = lt). More precisely, a period t is an:

• Inventory point of type 1 if s+t = 0 and s−t = 0;

• Inventory point of type 2 if s+t = 0 and s−t = lt.

Using these production and inventory points, some properties will characterize the fea-
sible extreme flows of the problem.

Proposition 1.
The following propositions are equivalent:

• (x̂, r̂, ŝ+, ŝ−) is an extreme flow of ULSS;

• (x̂, r̂, ŝ+, ŝ−) is feasible and between every pair of production points (i, k) such that
i < k, there exists at least an inventory point j such that i ≤ j < k.

Proof. Let us assume that we have two consecutive production points i and k with i < k

with no inventory point between them in an extreme flow. By Lemma 1, this implies that
for all the vertices t between i and k we have either (s+t > 0 and s−t = 0) or (s+t = 0 and
0 < s−t < lt). This extreme flow contains a cycle where there is no edge flow fixed to its
bound. If such a cycle exists in an extreme flow, then this flow can easily be expressed
according to two other feasible flows. This proves that such a flow is not extreme and con-
tradicts the assumption. Conversely, let us now assume that (x̂, r̂, ŝ+, ŝ−) is feasible, not
extreme and between every pair of production points (i, k) such that i < k, there exists
at least an inventory point j such that i ≤ j < k. Since (x̂, r̂, ŝ+, ŝ−) is not extreme, the
solution does not correspond to a maximal tree of the fixed-charge network. Therefore, the
solution contains a cycle with no edge fixed to one of its bounds. Obviously, this cycle does
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not contain inventory points, which is a contradiction.

The following proposition is equivalent to the properties given by Proposition 1:

Proposition 2. (x̂, r̂, ŝ+, ŝ−) is feasible and between every pair of adjacent inventory points
there exists at most one production point.

The proof relies on the same arguments as the ones given in Proposition 1.

3.4 Numerical example of the ULSS problem

The following example illustrates an optimal solution structure for the ULSS problem. The
data of the example are described in Table 1.

Period (t) 1 2 3 4 5

Demand (dt) 1 000 1 000 1 000 1 000 1 000

Safety stock level (lt) 200 800 1 000 1 000 800

Setup cost (βt) 200 000 250 000 250 000 100 000 250 000

Unitary production cost (αt) 70 70 70 70 70

Unitary inventory cost (γ+
t ) 55 55 55 55 55

Unitary shortage cost (ϕt) 250 212.5 175 137.5 100

Unitary deficit cost (γ−t ) 150 127.5 105 82.5 60

Table 1: A five-period ULSS example.

The optimal solution of the problem is obtained using the mathematical model presented
in Section 2.1 and the Cplex 9.0 Mixed Integer Linear Programming (MILP) solver. The
solution is given in Table 2 and the associated network depicted in Figure 2.

Period (t) 1 2 3 4 5

Demand (dt) 1 000 1 000 1 000 1 000 1 000
Safety stock (lt) 200 800 1 000 1 000 800

Quantity produced (xt) 2 800 0 0 2 000 0

Shortage (rt) 0 0 200 0 0

Overstock (s+t ) 1 600 0 0 0 0

Deficit on safety stock (s−t ) 0 0 1 000 0 800

Table 2: Optimal solution of the ULSS example.

From Table 2, it is interesting to notice that the demand in period 3 is partially lost. We
can also observe that period 2 and 4 (resp. 3 and 5) are inventory points of type 1 (resp.
type 2). Figure 2 represents the network structure of the optimal solution. Arcs represented
in bold are the ones fixed at their upper bounds which are the safety stock levels.

3.5 Dynamic programming algorithm

Based on the properties of the optimal solutions, we develop a dynamic programming al-
gorithm to solve the ULSS problem. We have proved in the last section that a feasible
solution is an extreme flow if and only if between every couple of adjacent inventory points
i, k with i < k, there exists at most one production point j with i < j ≤ k. A solution
approach to find the optimal solution consists in searching all the extreme flows that satisfy
this property and identify the minimum cost extreme flow. The rationale of the algorithm
is to consider all the triplets (i, j, k) with i < j ≤ k where i and k are inventory points and
j is a production point, and to find the sequence of triplets (i, j, k) which has the minimum
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Figure 2: A network representation of the optimal solution of the ULSS example.

cost value. For each triplet (i, j, k) we define a sub-problem that we solve optimally. The
sub-problem is a restricted problem of ULSS that will be denoted as ULSSuvijk. The indices
u and v characterize the inventory points (type 1 or 2). The index u (resp. v) is fixed to 0
if the period i − 1 (resp. k) is an inventory point of type 1. The index u (resp. v) is fixed
to 1 if the period i− 1 (resp. k) is an inventory point of type 2.

If we assume that {i, . . . , k} represent the set of integers from i to k, ULSSuvijk is defined
on the interval of periods {i, . . . , k}. There is a production point only at period j, the
production variables at period t ∈ {i, . . . , k} \ j are equal to zero, i.e., xt = 0. We denote
with Zuvijk the optimal value of the objective function of the problem ULSSuvijk. ULSSuvijk can
be solved using a minimum cost flow algorithm.

The cost Zuvik on the interval i, . . . , k can be computed by deriving the minimum between
all the optimal policies on the interval {i, . . . , k} with j being the unique production period,
i < j ≤ k, and the optimal policy on the interval {i, . . . , k} with no production period which
is denoted by Zuvi0k.

Zuvik = min
[
Zuvi0k, min

i<j≤k
Zuvijk

]
(27)

An optimal basis for the ULSS solution corresponds to the minimum value of a sequence
of adjacent inventory points intervals. The function Fuk defines the minimum value of the
adjacent inventory point sequence from period 1 to period k. This function can be computed
using the following recursive formula:
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F vk = min
i≤k;u=0,1

{
Fui−1 + Zuvik

}
(28)

The optimal value of ULSS problem is given by FT = minv=0,1 F
v
T .

The algorithm for solving the ULSS problem is described as follows:

Algorithm 1 solving ULSS
1: u← 0, v ← 0
2: for all t ∈ {1, . . . , T} and u ∈ {0, 1} do
3: Fu

t ← +∞, Fu
0 ← 0

4: end for
5: for i = 1 to T − 1 do
6: for k = i+ 1 to T do
7: repeat
8: Compute Zuv

i0k, Zuv
ik ← Zuv

i0k

9: for j = i+ 1 to k do
10: Compute Zuv

ijk, Zuv
ik ← min

[
Zuv

ik , Z
uv
ijk

]
11: end for
12: F v

k ← min {F v
k , F

u
i−1 + Zuv

ik }
13: v ← 1− v
14: if v = 0 then
15: u← 1− u
16: end if
17: until u = 0 and v = 0
18: end for
19: end for
20: FT = minu=0,1 F

u
T

3.6 Algorithm complexity

The ULSSuvijk problems can be solved using a minimum cost flow algorithm. One of the best
strongly polynomial minimum cost flow algorithm is proposed by Orlin [20]. It solves the
problem in O(m log n(m + n log n)), where m and n represent respectively the number of
arcs and the number of nodes of the network.

In the worst case, the number of vertices of the problem network Zuvijk is 2T + 3 and the
number of arcs is 5T+1. Then, n = 2T+3 and m = 5T+1. The computation of Zuvijk is done
in O(T 2 log2 T ). The complexity of the algorithm that solves ULSS is thus O(T 5 log2 T ).

The complexity of O(T 5 log2 T ) is reduced to O(T 2) when safety stocks are not consid-
ered. Aksen et al. [6] proposed an O(T 2) dynamic programming algorithm to solve the
problem optimally. This problem satisfies Zangwill conditions [26]. Indeed, at each period,
either the demand at this period is totally lost, or entirely satisfied by a production or a
stock. At a given period, we cannot observe a combination of the three possibilities, i.e.,
production, stock or shortage.

By relaxing constraints (24) of the ULSS problem and removing the safety stock variation
parameters (σt), we obtain a single item lot-sizing problem with shortages and backlogging.
When the capacity constraints on safety stock variables are relaxed, demands can also be
met in future periods. This problem also satisfies Zangwill conditions [26]. Again, a demand
in a given period can be satisfied by a production, a stock, a backlog or it will be totally
lost. A combination of these four possibilities never occurs. According to this condition, it
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is easy to derive an O(T 3) algorithm to solve this problem optimally. The principle of this
dynamic programming algorithm is based on the setting of the production points. Actually,
an optimal solution can be found, just by looking for a sequence of production points that
respect Zangwill conditions [25, 27] and minimize the total cost. This sequence takes O(T 2)
operations. The cost calculation for each consecutive production points takes O(T ). Thus,
an O(T 3) dynamic programming algorithm follows.

4 Lagrangian relaxation algorithm

The Lagrangian relaxation algorithm consists mainly of the following steps (we refer to
Fisher [12] for a general survey on Lagrangian relaxation):

1. Initialization: all Lagrange multipliers πt are set to 0.

2. For a given iteration k:

(a) Solving the relaxed problem: compute L (x, y, r, s+, s−, π) at each iteration by
using the dynamic programming algorithm 1 described in 3.5 for each ULSSuvijk
sub-problem. A current lower bound is found. If the lower bound value improves
the current one, then it must be saved.

(b) Lagrangian heuristic: a heuristic is used to find a feasible solution using a smooth-
ing procedure as described in the following paragraph.

(c) Updating Lagrange multipliers: use the subgradient optimization method to up-
date the multipliers.

(d) Stopping criteria: if any stopping condition is met, then save the best solution
obtained.

(e) Updating step length of the subgradient method: update the step length of the
algorithm so that it satisfies the convergence conditions of the subgradient algo-
rithm.

It is important to mention that the properties given by Lemma 1 and Lemma 2 are valid
at each iteration of the algorithm. Indeed, between two consecutive iterations, the only
variables affected by a change on their costs are the setup and the production variables.

In order to find a feasible solution at each step of the Lagrangian relaxation algorithm,
we propose a Lagrangian based upper bound denoted as AKS. It is based on the Lagrangian
solution obtained at each step of the Lagrangian relaxation process. Since the capacity
constraints (4) are relaxed, the Lagrangian solution violates them. AKS heuristic is mainly
based on a smoothing procedure to lower the deficits and shortages by reusing missing re-
source capacities. The heuristic is based on the work of Trigeiro et al. [22] who proposed
an efficient Lagrangian relaxation heuristic for the classical multi-item capacitated lot-sizing
problem with setup times. Recently, Brahimi et al. [7] proposed a generalization of Trigeiro
et al. [22] smoothing heuristic to solve the capacitated lot-sizing problem with time windows.

AKS has a maximum of three passes and stops if the solution is feasible for the original
problem or if it does not manage to remove overcapacity. In this case, a correction pass
is used to remove unnecessary inventory. The smoothing heuristic AKS has the distinctive
feature of obtaining a feasible solution at each step of the Lagrangian relaxation process.
Basically, when AKS fails to find a feasible solution, it uses another pass to create either
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safety stock or demand shortages. To select the item to be shifted at each step, different
criteria were tested. Computational results show that the choice based on selecting the
item in the increasing order of the ratio (29) given by the total Lagrangian cost divided by
the quantity of removed overcapacity gives the best solutions. AKS smoothing heuristic is
described in what follows:

1. Backward pass:

Start at the last period and move production of a selected item to earlier periods to
alleviate the capacity constraint violation. To select the item to be shifted, a ratio
given by expression (29) is evaluated. Items are evaluated in the increasing order of
this ratio until the overcapacity is eliminated.

(Qitt′(vit′πt′ − vitπt) + πt′fit′ − πtfit + Iitt′ + Pitt′)/Oitt′ (29)

where:

• Qitt′ represents the production of item i shifted from period t to period t′.

• Iitt′ is the inventory cost derived from Qitt′ when the production is shifted from
period t to period t′. This cost takes into account inventory costs as well as safety
stock deficit costs.

• Pitt′ is the production cost induced by removing Qitt′ at period t and producing
Qitt′ at period t′. This cost takes into account setup costs when needed.

• Oitt′ is the amount of overcapacity removed at period t when shifting Qitt′ . Setup
times are removed when needed.

2. Forward pass:

Starting at the beginning of the planning horizon, production is shifted to the next
later period. The criterion used is the minimization of the additional Lagrangian cost
incurred per unit of shifted capacity. To select the item to be shifted, the expression
(29) is used as previously except that t′ is replaced by t + 1. Items are evaluated in
the increasing order of their ratio until capacity violation is eliminated.

3. Shortage and fix-up pass:

When the setup variables are fixed according to previous passes, the model obtained
is a linear programming model that can be solved polynomially. The model will cre-
ate demand shortages and safety stock deficits when needed and will optimize the
quantities produced and the inventory levels. The model will also remove unnecessary
inventory. Obviously, the obtained solution is feasible for the original MCLSS problem.

5 Computational results

In this section, we present experimental results resulting from the application of the La-
grangian relaxation of the capacity constraints of the MCLSS problem. Our algorithms are
implemented in the C++ programming language. We use the callable Cplex 9.0 library to
solve the MILP problems. The computations were performed on an Intel Core 2 CPU 2.67
GHz PC with 3.25 GB RAM.

We have performed computational tests on a series of extended instances from the lot-
sizing library LOTSIZELIB, initially described in [22]. These instances are denoted by
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trN−T , where N = 6, 12, 24 is the number of items and T = 15, 30 is the number of periods.
These instances are characterized by a variable resource consumption equal to one, and
enough capacity to satisfy all demands over the planning horizon. They are also character-
ized, by important setup costs, small setup times and no safety stocks.

Since these instances have enough capacity to satisfy all demands over the planning
horizon, we make some modifications to induce shortages. We have derived 72 new instances
from the trN−T instances by increasing the resource requirements and adding some safety
stocks. Variable resource requirements are multiplied by a coefficient (1 + η) such that
0 ≤ η ≤ 0.001× ct where ct represents the available resource capacity at period t.

We carried out some modifications on setup times which are increased by multiplying
them by a coefficient 1, 1.5, 2 or 3. Safety stock coverage is the number of periods where
the amount of the demand is kept in the stock. Safety stock expressed in coverage is mainly
used to cover the possible variation between forecasts and realized sales. At each period,
safety stock is computed according to future needs. Thus, safety stock is equal to the sum
of the demands on the section of the horizon which starts at this period and which has the
length of the safety stock coverage. Safety stock coverage is fixed to 1, 1.5 or 2.

Demand and safety stock shortage costs are considered as penalty costs and their values
must be higher than other cost components. Therefore, ϕit and γ−it are fixed such that
ϕit >> γ−it >> maxi′,t′

{
αi′t′ ; γ+

i′t′

}
. Moreover, shortage costs have the feature that they

decrease over the horizon. Indeed, demands in the first periods of the horizon correspond to
real orders and not forecasts in contrast to the demands in the last periods that are usually
only predictions. They are generated in the same way for all the described instances.

The Lagrangian sub-problems obtained at each step of the Lagrangian relaxation are
solved optimally using Cplex 9.0 solver for the model ULSS described in Section 3.1. How-
ever, it would be interesting to use a specific minimum cost flow algorithm. We use a
subgradient method to compute the Lagrangian multipliers. The Lagrangian relaxation
parameters are fixed according to the schema proposed by Held et al. [14].

We carried out a comparison between the following methods:

• the LR algorithm implements the Lagrangian relaxation of the capacity constraint
which gives a lower bound for the MCLSS problem. At each step of the Lagrangian
relaxation, an upper bound is computed using the Lagrangian heuristic described in
the last section.

• the BC-AG method implements the standard branch-and-cut of Cplex 9.0 solver using
the aggregate formulation of the MCLSS problem.

• the BC-FL algorithm implements the standard branch-and-cut of Cplex 9.0 solver
using the facility location based formulation of the MCLSS problem.

In the LR and BC-AG algorithms, we used the aggregate model defined in Section 2.1
by the set of constraints (1)-(9). In the BC-FL algorithm, we used the disaggregate model
defined by the set of constraints (10)-(19) in Section 2.2. Absi [1] shows that contrary
to the classical multi-item capacitated lot-sizing problem, the aggregate formulation of the
MCLSS problem leads to better linear relaxation bounds than its disaggregate formulation
when using a standard solver.

The algorithm comparisons are based on the following criteria. The first one is the gap
between the upper bound (UB) and the lower bound (LB). It is given by the formula sug-
gested by Millar and Yang [19]:
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Gap = 200× UB−LB
UB+LB

To evaluate the upper bound (UB) (resp. the lower bound (LB)), we define GapUB (resp.
GapLB) as the distance from UB (resp. LB) to an estimated value of the optimal solution
denoted by õpt. These gaps were previously used by Brahimi et al. [7]. For each instance,
õpt = (UB∗−LB∗)/2 with UB∗ and LB∗ giving respectively the best upper bound and the
best lower bound found so far for the problem. Thus, we have:

GapUB = 200× UB−õpt
UB+õpt

and GapLB = 200× õpt−LB
õpt+LB

The LR algorithm stops if a maximum number of 100, 150, 200 and 300 iterations is
reached or a time limit of 100, 300 or 600 seconds is achieved. We use the CPU time of the
LR method as a stopping criterion (time limit) for the BC-AG and BC-FL methods. We
also used a time limit of 100, 300 or 600 seconds as a stopping criterion for the BC-AG and
BC-FL methods. To keep the presentation of the computational results concise, average
gaps for all instances sharing the same value of a given parameter are reported on a single
line. For example, the first gap of Table 3 represents the average gap of all instances having
6 items. Some detailed results will also be presented in Table 11.

Tables 3 and 4 summarize the computational behavior of the Lagrangian relaxation
method. The stopping criterion is based on the maximum number of iterations. Average
gaps are computed for each instance characterized by the following parameters: the number
of items (N), the number of periods (T ), the setup time factor and the safety stock coverage.
Table 5 shows the average CPU time (s) of the Lagrangian relaxation method for the previous
parameters.

100 iterations 150 iterations
Gap GapLB GapUB Gap GapLB GapUB

N 6 11.91% 5.87% 6.07% 7.53% 3.70% 3.83%
12 6.92% 3.31% 3.62% 4.20% 2.01% 2.19%
24 8.74% 4.42% 4.33% 5.53% 2.74% 2.80%

T 15 11.92% 5.91% 6.03% 7.33% 3.56% 3.78%
30 6.46% 3.15% 3.32% 4.19% 2.08% 2.11%

Setup time 1 4.62% 2.20% 2.42% 4.25% 2.16% 2.09%
factor 1.5 12.95% 6.46% 6.51% 6.92% 3.32% 3.60%

2 5.06% 2.46% 2.60% 4.77% 2.42% 2.34%
3 14.19% 7.09% 7.13% 7.16% 3.39% 3.77%

Safety stock 1 9.66% 4.83% 4.84% 6.47% 3.19% 3.28%
coverage 1.5 8.70% 4.39% 4.32% 5.89% 2.91% 2.98%

2 9.20% 4.37% 4.85% 4.91% 2.35% 2.57%

Table 3: Average gaps for the Lagrangian relaxation algorithm (100 and 150 iterations).

From Tables 3 and 4, we can notice that the difference between the gaps after 100 and
150 iterations is very big, while the difference between the gaps after 150 and 200 iterations
is small, and the difference between 200 and 300 iterations is very small.

We can also notice that the gaps are higher when the number of items is smaller. The
same remark is valid for the safety stock coverage and the number of periods. Indeed, when
these parameters increase, all the gaps decrease. On the other hand, when the setup time
factors is bigger, the gaps increase.

From Table 5, we can notice that the CPU time of the Lagrangian relaxation method is
almost an increasing linear function of the number of iterations. One can observe that the
execution time does not depend on the setup time factor and the safety stock coverage pa-
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200 iterations 300 iterations
Gap GapLB GapUB Gap GapLB GapUB

N 6 7.15% 3.66% 3.49% 7.15% 3.66% 3.49%
12 3.95% 1.99% 1.96% 3.93% 1.99% 1.94%
24 5.30% 2.70% 2.60% 5.30% 2.70% 2.60%

T 15 6.88% 3.52% 3.37% 6.88% 3.52% 3.37%
30 4.05% 2.05% 2.00% 4.03% 2.05% 1.99%

Setup time 1 4.25% 2.16% 2.09% 4.25% 2.16% 2.09%
factor 1.5 6.42% 3.28% 3.14% 6.42% 3.28% 3.14%

2 4.76% 2.42% 2.34% 4.76% 2.42% 2.34%
3 6.47% 3.29% 3.19% 6.44% 3.29% 3.16%

Safety stock 1 6.22% 3.17% 3.05% 6.22% 3.17% 3.05%
coverage 1.5 5.60% 2.85% 2.75% 5.58% 2.85% 2.73%

2 4.58% 2.32% 2.25% 4.58% 2.32% 2.25%

Table 4: Average gaps of the Lagrangian relaxation algorithm (200 and 300 iterations).

Number of iterations
100 150 200 300

N 6 50 129 225 471
12 52 127 219 453
24 54 138 240 495

T 15 50 134 236 493
30 54 129 220 454

Setup time 1 33 66 108 227
factor 1.5 72 197 347 715

2 36 67 109 229
3 69 195 348 721

Safety stock 1 29 72 124 260
coverage 1.5 59 143 245 505

2 69 179 315 654

Table 5: Computational results: Average CPU times (seconds) of the Lagrangian relaxation.
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rameters. On the other hand, CPU times increase considerably when the number of periods
increases, and they increase almost linearly when the number of items increases.

Computational results have shown that a number of iterations between 150 and 200
seems to be a good trade-off between the solution quality and the computation time. In
what follows, we carried out computational experimentations in order to compare the results
obtained by the Lagrangian relaxation method (LR) to those obtained by Cplex 9.0 standard
solver (BC-AG) and (BC-FL). We focused on two scenarios where the number of iterations
for the LR method are fixed to 150 and 200 iterations. The stopping criterion of the BC-AG
and BC-FL methods is a time limit which is equal to the CPU time of the LR method. We
also used a time limit criterion equals to 100, 300 and 600 seconds for the three methods.

Tables 6 summarizes the computational behavior of the BC-AG, BC-FL and LR methods
based on 150 iterations stopping criterion of the LR method. Tables 7 summarizes the
same computations for 200 iterations of the Lagrangian relaxation algorithm LR. Tables 8
summarizes the computational behavior of the BC-AG, BC-FL and LR methods based on a
stopping criteria based on a CPU time equals to 100 seconds. Table 9 (resp. 10) summarizes
the same computations with 300 seconds (resp. 600 seconds). Average gaps are calculated
for different values of the following parameters: the number of items (N), the number of
periods (T ), the setup time factor and the safety stock coverage.

LR method BC-AG method BC-FL method
Gap GapLB GapUB Gap GapLB GapUB Gap GapLB GapUB

N 6 8,94% 2,07% 6,87% 12,21% 10,19% 2,02% 30,06% 23,63% 6,56%
12 5,46% 1,49% 3,97% 15,29% 13,85% 1,46% 26,52% 20,91% 5,70%
24 2,87% 0,97% 1,90% 12,79% 11,73% 1,07% 24,50% 17,89% 6,70%

T 15 4,51% 0,97% 3,54% 7,09% 6,14% 0,95% 19,58% 14,34% 5,28%
30 7,01% 2,05% 4,96% 19,77% 17,70% 2,08% 34,47% 27,28% 7,36%

Setup 1 3,50% 0,93% 2,57% 11,11% 10,11% 1,01% 27,76% 20,65% 7,23%
time 1,5 4,87% 1,29% 3,58% 13,00% 11,68% 1,33% 27,36% 20,99% 6,48%
factor 2 6,58% 1,74% 4,85% 14,44% 12,75% 1,70% 26,84% 21,05% 5,89%

3 8,07% 2,08% 6,00% 15,17% 13,16% 2,03% 26,14% 20,56% 5,68%
Safety 1 7,53% 1,96% 5,58% 14,81% 12,89% 1,94% 26,07% 21,28% 4,87%
stock 1,5 5,53% 1,51% 4,02% 13,93% 12,42% 1,52% 28,11% 21,96% 6,26%
coverage 2 4,20% 1,06% 3,14% 11,54% 10,46% 1,09% 26,89% 19,19% 7,83%

Table 6: Computational results: the LR method vs. the BC-FL and BC-AG methods (150
iterations).

LR method BC-AG method BC-FL method
Gap GapLB GapUB Gap GapLB GapUB Gap GapLB GapUB

N 6 8,61% 1,95% 6,66% 11,55% 9,66% 1,90% 29,23% 23,03% 6,33%
12 5,08% 1,44% 3,65% 15,01% 13,60% 1,42% 25,92% 20,69% 5,31%
24 2,70% 0,93% 1,77% 12,69% 11,61% 1,08% 22,14% 17,79% 4,39%

T 15 4,51% 0,92% 3,58% 6,77% 5,86% 0,91% 19,14% 13,94% 5,23%
30 6,42% 1,95% 4,47% 19,39% 17,38% 2,03% 32,39% 27,06% 5,46%

Setup 1 3,36% 0,88% 2,47% 10,82% 9,84% 0,99% 26,30% 20,35% 6,05%
time 1,5 4,74% 1,21% 3,53% 12,63% 11,37% 1,27% 26,25% 20,71% 5,63%
factor 2 6,32% 1,69% 4,63% 14,11% 12,44% 1,69% 25,84% 20,75% 5,17%

3 7,44% 1,97% 5,48% 14,76% 12,83% 1,93% 24,67% 20,20% 4,53%
Safety 1 7,15% 1,90% 5,25% 14,47% 12,57% 1,91% 25,48% 21,01% 4,54%
stock 1,5 5,30% 1,38% 3,91% 13,48% 12,06% 1,43% 27,15% 21,64% 5,61%
coverage 2 3,95% 1,03% 2,92% 11,29% 10,24% 1,06% 24,65% 18,86% 5,88%

Table 7: Computational results: the LR method vs. the BC-FL and BC-AG methods (200
iterations).

From Tables 6, 7, 8, 9, 10, we can notice that the LR method gives better lower bounds
than the BC-AG and BC-FL methods. On the other hand, BC-AG gives better upper

16



LR method BC-AG method BC-FL method
Gap GapLB GapUB Gap GapLB GapUB Gap GapLB GapUB

N 6 8,61% 1,86% 6,75% 10,99% 9,18% 1,82% 28,45% 22,22% 6,36%
12 5,96% 1,56% 4,40% 15,27% 13,76% 1,52% 28,49% 20,74% 7,91%
24 10,82% 4,03% 6,83% 12,95% 9,65% 3,32% 30,58% 15,78% 15,33%

T 15 4,51% 0,87% 3,64% 6,45% 5,60% 0,86% 18,70% 13,47% 5,27%
30 12,42% 4,10% 8,35% 19,69% 16,13% 3,58% 39,64% 25,69% 14,47%

Setup 1 4,81% 1,24% 3,57% 10,73% 9,52% 1,21% 28,82% 19,89% 9,11%
time 1,5 6,97% 1,91% 5,07% 12,60% 10,77% 1,84% 28,25% 19,92% 8,48%
factor 2 9,46% 2,68% 6,78% 14,10% 11,55% 2,56% 33,19% 19,66% 14,17%

3 12,60% 4,10% 8,55% 14,86% 11,62% 3,27% 26,44% 18,84% 7,71%
Safety 1 10,41% 2,93% 7,50% 14,45% 11,68% 2,78% 26,42% 19,98% 6,53%
stock 1,5 8,78% 2,84% 5,97% 13,50% 11,26% 2,25% 28,63% 20,68% 8,10%
coverage 2 6,19% 1,69% 4,51% 11,26% 9,65% 1,62% 32,47% 18,07% 14,97%

Table 8: Computational results: the LR method vs. the BC-FL and BC-AG methods (100
seconds).

LR method BC-AG method BC-FL method
Gap GapLB GapUB Gap GapLB GapUB Gap GapLB GapUB

N 6 8,59% 1,76% 6,83% 9,90% 8,18% 1,72% 27,00% 20,85% 6,26%
12 5,08% 1,41% 3,68% 14,71% 13,34% 1,39% 25,52% 20,34% 5,25%
24 3,02% 1,01% 2,02% 12,69% 11,65% 1,05% 25,07% 17,78% 7,39%

T 15 4,51% 0,79% 3,72% 5,81% 5,03% 0,78% 17,72% 12,54% 5,21%
30 6,62% 1,99% 4,63% 19,06% 17,09% 1,99% 34,00% 26,77% 7,40%

Setup 1 3,44% 0,85% 2,59% 10,23% 9,35% 0,88% 26,87% 19,56% 7,43%
time 1,5 4,81% 1,19% 3,62% 12,02% 10,82% 1,21% 26,49% 19,90% 6,70%
factor 2 6,37% 1,59% 4,79% 13,33% 11,78% 1,56% 25,71% 19,78% 6,02%

3 7,63% 1,93% 5,70% 14,17% 12,28% 1,90% 24,37% 19,39% 5,06%
Safety 1 7,23% 1,84% 5,40% 13,69% 11,88% 1,82% 25,07% 20,15% 5,00%
stock 1,5 5,46% 1,35% 4,11% 12,83% 11,50% 1,34% 27,14% 20,84% 6,41%
coverage 2 4,00% 0,99% 3,01% 10,78% 9,80% 0,99% 25,37% 17,98% 7,50%

Table 9: Computational results: the LR method vs. the BC-FL and BC-AG methods (300
seconds).

LR method BC-AG method BC-FL method
Gap GapLB GapUB Gap GapLB GapUB Gap GapLB GapUB

N 6 8,59% 1,70% 6,89% 9,25% 7,59% 1,67% 25,90% 19,89% 6,11%
12 5,08% 1,38% 3,70% 14,39% 13,04% 1,36% 25,14% 20,05% 5,16%
24 2,72% 0,90% 1,82% 12,53% 11,49% 1,05% 22,13% 17,63% 4,55%

T 15 4,51% 0,75% 3,76% 5,43% 4,69% 0,74% 17,07% 11,97% 5,12%
30 6,42% 1,91% 4,52% 18,68% 16,72% 1,98% 31,70% 26,41% 5,42%

Setup 1 3,36% 0,78% 2,58% 9,90% 9,02% 0,88% 25,12% 19,10% 6,11%
time 1,5 4,71% 1,10% 3,61% 11,62% 10,45% 1,18% 25,09% 19,44% 5,73%
factor 2 6,35% 1,56% 4,79% 12,96% 11,44% 1,54% 24,16% 19,33% 4,89%

3 7,44% 1,87% 5,57% 13,75% 11,92% 1,84% 23,19% 18,89% 4,36%
Safety 1 7,15% 1,74% 5,41% 13,20% 11,45% 1,76% 23,97% 19,65% 4,38%
stock 1,5 5,32% 1,29% 4,03% 12,46% 11,15% 1,32% 25,91% 20,39% 5,61%
coverage 2 3,93% 0,96% 2,97% 10,51% 9,52% 0,99% 23,29% 17,53% 5,83%

Table 10: Computational results: the LR method vs. the BC-FL and BC-AG methods (600
seconds).
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bounds and BC-FL gives very bad lower bounds. Gaps provided by the LR method are
better than those provided by the BC-AG and BC-FL methods. Some observations can
be added as done for Tables 3 and 4. Indeed, when the number of periods increases, gaps
increase for the BC-AG, BC-FL and LR methods. The same remark can be done for the
setup time factor parameter except for the BC-FL method. For the BC-AG and BC-FL
methods, we can notice that the difference between the gap of the 30 periods instances and
those with 15 periods is very high. However, the BC-AG algorithm is less sensitive to the
number of items. Basically, gaps of the LR method decrease when the number of items
increases (except for Table 8), but gaps of the BC-AG and BC-FL methods do not depend
on the number of items. We can also notice for the LR and BC-AG methods that the gaps
are higher when safety stock coverage parameter decreases. This remark is not valid for the
BC-FL method.

From Tables 6 to 10, we can easily notice that the BC-FL method gives the worst results
especially for the lower bounds. Some detailed results presented in Table 11 confirm these
observations. In fact, we can notice that lower bounds provided by the LR method are
always better than those provided by the BC-AG and BC-FL methods. For instances with
6 items and 15 periods, the difference between the LR and BC-AG lower bounds is quite
small. The same difference turns out to be very high for instances with 30 periods. On
the other hand, the lower bounds attained by the LR method are always much tighter than
those attained by the BC-FL method.

The LR method upper bounds are less interesting than those provided by the BC-AG
method, but the difference is not very significant. For some instances with 24 items and 30
periods, the LR method outperforms the BC-AG algorithm. The BC-FL method gives the
worst lower bounds. The upper bounds provided by BC-FL are generally less interesting,
except for some instances when comparing the LR method to the BC-FL method.

According to Tables 6 to 11, we can say that the LR method gives better results than
the BC-AG and BC-FL methods even if upper bounds are better for the BC-AG method.
Therefore, we can easily notice that combining the BC-AG upper bounds and the LR lower
bounds could lead to better gaps.
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6 Conclusion

In this paper, we propose a mathematical formulation of a new multi-item capacitated lot-
sizing problem with setup times. This formulation takes into account several industrial
constraints such as shortage costs and safety stock deficit costs. To derive a good lower
bound, we have used an approach based on the Lagrangian relaxation of the resource capacity
constraints. We have also proposed an algorithm that solves the induced single-item sub-
problems optimally by solving T 3 minimum cost flow problems where T denotes the number
of periods. The complexity of this algorithm could be improved using a geometric approach
[23]. It can also be improved by combining some new characteristics of the optimal solution.
Some computational improvements could be reached by implementing a specific minimum
cost flow algorithm. Numerical results show that our Lagrangian relaxation approach leads
to better gaps and tighter lower bounds than those provided by a standard solver, while
the standard solver gives better upper bounds. Our Lagrangian relaxation approach could
be improved by developing a new heuristic or metaheuristic to construct better feasible
solutions. Since the LR lower bounds are very good in comparison with the ones obtained
by a standard solver, an exact solution method to be developed for the MCLSS in the future
could leverage Lagrangian relaxation based lower bounds.
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